Quantum Computing with Superconducting Circuits in the Picosecond Regime

被引:11
|
作者
Zhu, Daoquan [1 ,2 ,3 ]
Jaako, Tuomas [4 ]
He, Qiongyi [1 ,2 ,3 ]
Rabl, Peter [4 ]
机构
[1] Peking Univ, Frontiers Sci Ctr Nanooptoelect, Sch Phys, State Key Lab Mesoscop Phys, Beijing 100871, Peoples R China
[2] Peking Univ, Collaborat Innovat Ctr Quantum Matter, Beijing 100871, Peoples R China
[3] Shanxi Univ, Collaborat Innovat Ctr Extreme Opt, Taiyuan 030006, Shanxi, Peoples R China
[4] TU Wien, Atominst, Vienna Ctr Quantum Sci & Technol, A-1040 Vienna, Austria
基金
奥地利科学基金会; 北京市自然科学基金; 中国国家自然科学基金;
关键词
DISCRETE LOGARITHMS; ALGORITHMS; STATE;
D O I
10.1103/PhysRevApplied.16.014024
中图分类号
O59 [应用物理学];
学科分类号
摘要
We discuss the realization of a universal set of ultrafast single- and two-qubit operations with superconducting quantum circuits and investigate the most relevant physical and technical limitations that arise when pushing for faster and faster gates. With the help of numerical optimization techniques, we establish a fundamental bound on the minimal gate time, which is determined independently of the qubit design solely by its nonlinearity. In addition, important practical restrictions arise from the finite qubit transition frequency and the limited bandwidth of the control pulses. We show that, for highly anharmonic flux qubits and commercially available control electronics, elementary single- and two-qubit operations can be implemented in about 100 ps with residual gate errors below 10-4. Under the same conditions, we simulate the complete execution of a compressed version of Shor's algorithm for factoring the number 15 in about 1 ns. These results demonstrate that, compared to state-of-the-art implementations with transmon qubits, a hundredfold increase in the speed of gate operations with superconducting circuits is still feasible.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Superconducting Circuits for Quantum Information: An Outlook
    Devoret, M. H.
    Schoelkopf, R. J.
    SCIENCE, 2013, 339 (6124) : 1169 - 1174
  • [42] A Microwave Splitter for Superconducting Quantum Circuits
    Neilinger, P.
    Oelsner, G.
    Grajcar, M.
    Ivanov, B. I.
    Novikov, I. L.
    Il'ichev, E. V.
    TECHNICAL PHYSICS LETTERS, 2015, 41 (04) : 314 - 316
  • [43] Microwave quantum photonics in superconducting circuits
    Nakamura, Yasunobu
    2012 IEEE PHOTONICS CONFERENCE (IPC), 2012, : 544 - 545
  • [44] Quantum thermal transistor in superconducting circuits
    Majland, Marco
    Christensen, Kasper Sangild
    Zinner, Nikolaj Thomas
    PHYSICAL REVIEW B, 2020, 101 (18)
  • [45] Topological quantum material simulated with superconducting quantum circuits
    Yu Xiang-Min
    Tan Xin-Sheng
    Yu Hai-Feng
    Yu Yang
    ACTA PHYSICA SINICA, 2018, 67 (22)
  • [46] Ion Trap Quantum Computing - a New Computing Regime
    Mukherjee, M.
    Dutta, T.
    Horne, N., V
    Lei, Y.
    Liu, P.
    Phua, J.
    Yum, D.
    SIGE, GE, AND RELATED COMPOUNDS: MATERIALS, PROCESSING, AND DEVICES 8, 2018, 86 (07): : 97 - 107
  • [47] Quantum computing with analog circuits: Hilbert space computing
    Kish, LB
    SMART STRUCTURES AND MATERIALS 2003: SMART ELECTRONICS, MEMS, BIOMEMS, AND NANOTECHNOLOGY, 2003, 5055 : 57 - 65
  • [48] Computing quantum dynamics in the semiclassical regime
    Lasser, Caroline
    Lubich, Christian
    ACTA NUMERICA, 2020, 29 : 229 - 401
  • [49] Binary Pooling Circuits for Quantum Computing
    Yetis, Hasan
    Karakose, Mehmet
    2021 INTERNATIONAL CONFERENCE ON DECISION AID SCIENCES AND APPLICATION (DASA), 2021,
  • [50] Quantum Computing: Circuits, Algorithms, and Applications
    Shafique, Muhammad Ali
    Munir, Arslan
    Latif, Imran
    IEEE ACCESS, 2024, 12 : 22296 - 22314