Superconducting quantum computing: a review

被引:0
|
作者
He-Liang Huang
Dachao Wu
Daojin Fan
Xiaobo Zhu
机构
[1] University of Science and Technology of China,Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics
[2] University of Science and Technology of China,Shanghai Branch, CAS Centre for Excellence and Synergetic Innovation Centre in Quantum Information and Quantum Physics
来源
关键词
quantum computing; superconducting quantum computing; quantum bit; quantum algorithm; qubit design; qubit control; qubit readout;
D O I
暂无
中图分类号
学科分类号
摘要
Over the last two decades, tremendous advances have been made for constructing large-scale quantum computers. In particular, quantum computing platforms based on superconducting qubits have become the leading candidate for scalable quantum processor architecture, and the milestone of demonstrating quantum supremacy has been first achieved using 53 superconducting qubits in 2019. In this study, we provide a brief review on the experimental efforts towards the large-scale superconducting quantum computer, including qubit design, quantum control, readout techniques, and the implementations of error correction and quantum algorithms. Besides the state of the art, we finally discuss future perspectives, and which we hope will motivate further research.
引用
收藏
相关论文
共 50 条
  • [1] Superconducting quantum computing: a review
    He-Liang HUANG
    Dachao WU
    Daojin FAN
    Xiaobo ZHU
    ScienceChina(InformationSciences), 2020, 63 (08) : 59 - 90
  • [2] Superconducting quantum computing: a review
    Huang, He-Liang
    Wu, Dachao
    Fan, Daojin
    Zhu, Xiaobo
    SCIENCE CHINA-INFORMATION SCIENCES, 2020, 63 (08)
  • [3] Superconducting quantum computing
    Wendin, G
    PHYSICS WORLD, 2003, 16 (05) : 24 - 26
  • [4] Superconducting route to quantum computing
    Abe, Eisuke
    2023 INTERNATIONAL CONFERENCE ON SIMULATION OF SEMICONDUCTOR PROCESSES AND DEVICES, SISPAD, 2023, : 1 - 4
  • [5] Superconducting circuits for quantum computing
    Spiller, TP
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2000, 48 (9-11): : 1075 - 1094
  • [6] Superconducting circuits for quantum computing
    2000, Hewlett Packard Laboratories
  • [7] Quantum Computing with Superconducting Circuits
    Schoelkopf, Robert
    2016 IEEE INTERNATIONAL INTERCONNECT TECHNOLOGY CONFERENCE / ADVANCED METALLIZATION CONFERENCE (IITC/AMC), 2016, : 43 - 44
  • [8] Quantum thermodynamics for quantum computing: Superconducting circuits
    Blok, Machiel S.
    Landi, Gabriel T.
    NATURE PHYSICS, 2025, 21 (02) : 187 - 188
  • [9] Hamiltonian quantum computing with superconducting qubits
    Ciani, A.
    Terhal, B. M.
    DiVincenzo, D. P.
    QUANTUM SCIENCE AND TECHNOLOGY, 2019, 4 (03)
  • [10] Superconducting system for adiabatic quantum computing
    Corato, V.
    Roscilde, T.
    Ruggiero, B.
    Granata, C.
    Silvestrini, P.
    7TH EUROPEAN CONFERENCE ON APPLIED SUPERCONDUCTIVITY (EUCAS'05), 2006, 43 : 1401 - 1404