Deep variational autoencoders for breast cancer tissue modeling and synthesis in SFDI

被引:0
|
作者
Pardo, Arturo [1 ,2 ]
Lopez-Higuera, Jose M. [1 ,2 ,3 ]
Pogue, Brian W. [4 ]
Conde, Olga M. [1 ,2 ,3 ]
机构
[1] Univ Cantabria, Photon Engn Grp GIF, TEISA Dept, Edificio IDi Telecomuniac,Avda Castros S-N, E-39005 Santander, Cantabria, Spain
[2] Inst Invest Sanitaria Valdecilla IDIVAL, Santander 39011, Cantabria, Spain
[3] Biomed Res Networking Ctr Bioengn Nanomat & Nanos, Ave Monforte de Lemos,3-5 Pabellon 11,Planta 0, Madrid 28029, Spain
[4] Dartmouth Coll, Thayer Sch Engn, Hanover, NH 03755 USA
关键词
Deep learning; modulated imaging; optical properties; spatial frequency domain imaging; breast cancer; variational autoencoder; turbid media;
D O I
10.1117/12.2527142
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Extracting pathology information embedded within surface optical properties in Spatial Frequency Domain Imaging (SFDI) datasets is still a rather cumbersome nonlinear translation problem, mainly constrained by intrasample and interpatient variability, as well as dataset size. The beta-variational autoencoder (beta-VAE) is a rather novel dimensionality reduction technique where a tractable set of latent low-dimensional embeddings can be obtained from a given dataset. These embeddings can then be sampled to synthesize new data, providing further insight into pathology variability as well as differentiability in terms of optical properties. Its applications for data classification and breast margin delineation are also discussed.
引用
收藏
页数:3
相关论文
共 50 条
  • [31] Feature Dimensionality Reduction with Variational Autoencoders in Deep Bayesian Active Learning
    Col, Pinar Ezgi
    Ertekin, Seyda
    29TH IEEE CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS (SIU 2021), 2021,
  • [32] Improving Deep Reinforcement Learning With Transitional Variational Autoencoders: A Healthcare Application
    Baucum, Matthew
    Khojandi, Anahita
    Vasudevan, Rama
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2021, 25 (06) : 2273 - 2280
  • [33] MODELING WOUND HEALING USING VECTOR QUANTIZED VARIATIONAL AUTOENCODERS AND TRANSFORMERS
    Backova, Lenka
    Bengoetxea, Guillermo
    Rogalla, Svana
    Franco-Barranco, Daniel
    Solon, Jerome
    Arganda-Carreras, Ignacio
    2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI, 2023,
  • [34] Exploring the Potential of Variational Autoencoders for Modeling Nonlinear Relationships in Psychological Data
    Milano, Nicola
    Casella, Monica
    Esposito, Raffaella
    Marocco, Davide
    BEHAVIORAL SCIENCES, 2024, 14 (07)
  • [35] Modeling Barrett's Esophagus Progression Using Geometric Variational Autoencoders
    van Veldhuizen, Vivien
    Vadgama, Sharvaree
    de Boer, Onno
    Meijer, Sybren
    Bekkers, Erik J.
    CANCER PREVENTION THROUGH EARLY DETECTION, CAPTION 2023, 2023, 14295 : 132 - 142
  • [36] Physics-Integrated Variational Autoencoders for Robust and Interpretable Generative Modeling
    Takeishi, Naoya
    Kalousis, Alexandros
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [37] Modeling conditional distributions of neural and behavioral data with masked variational autoencoders
    Schulz, Auguste
    Vetter, Julius
    Gao, Richard
    Morales, Daniel
    Lobato-Rios, Victor
    Ramdya, Pavan
    Goncalves, Pedro J.
    Macke, Jakob H.
    CELL REPORTS, 2025, 44 (03):
  • [38] Identification of monotonically expressed long non-coding RNA signatures for breast cancer using variational autoencoders
    Wang, Dongjiao
    Gao, Ling
    Gao, Xinliang
    Wang, Chi
    Tian, Suyan
    PLOS ONE, 2023, 18 (08):
  • [39] Identifying prognostic subgroups of luminal-A breast cancer using deep autoencoders and gene expressions
    Wang, Seunghyun
    Lee, Doheon
    PLOS COMPUTATIONAL BIOLOGY, 2023, 19 (05)
  • [40] Solving deep-learning density functional theory via variational autoencoders
    Costa, Emanuele
    Scriva, Giuseppe
    Pilati, Sebastiano
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2024, 5 (03):