Deep variational autoencoders for breast cancer tissue modeling and synthesis in SFDI

被引:0
|
作者
Pardo, Arturo [1 ,2 ]
Lopez-Higuera, Jose M. [1 ,2 ,3 ]
Pogue, Brian W. [4 ]
Conde, Olga M. [1 ,2 ,3 ]
机构
[1] Univ Cantabria, Photon Engn Grp GIF, TEISA Dept, Edificio IDi Telecomuniac,Avda Castros S-N, E-39005 Santander, Cantabria, Spain
[2] Inst Invest Sanitaria Valdecilla IDIVAL, Santander 39011, Cantabria, Spain
[3] Biomed Res Networking Ctr Bioengn Nanomat & Nanos, Ave Monforte de Lemos,3-5 Pabellon 11,Planta 0, Madrid 28029, Spain
[4] Dartmouth Coll, Thayer Sch Engn, Hanover, NH 03755 USA
关键词
Deep learning; modulated imaging; optical properties; spatial frequency domain imaging; breast cancer; variational autoencoder; turbid media;
D O I
10.1117/12.2527142
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Extracting pathology information embedded within surface optical properties in Spatial Frequency Domain Imaging (SFDI) datasets is still a rather cumbersome nonlinear translation problem, mainly constrained by intrasample and interpatient variability, as well as dataset size. The beta-variational autoencoder (beta-VAE) is a rather novel dimensionality reduction technique where a tractable set of latent low-dimensional embeddings can be obtained from a given dataset. These embeddings can then be sampled to synthesize new data, providing further insight into pathology variability as well as differentiability in terms of optical properties. Its applications for data classification and breast margin delineation are also discussed.
引用
收藏
页数:3
相关论文
共 50 条
  • [21] CONTROLLING WEATHER FIELD SYNTHESIS USING VARIATIONAL AUTOENCODERS
    Oliveira, Dario A. B.
    Diaz, Jorge G.
    Zadrozny, Bianca
    Watson, Campbell D.
    Zhu, Xiao Xiang
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 5027 - 5030
  • [22] Interpretable cardiac anatomy modeling using variational mesh autoencoders
    Beetz, Marcel
    Acero, Jorge Corral
    Banerjee, Abhirup
    Eitel, Ingo
    Zacur, Ernesto
    Lange, Torben
    Stiermaier, Thomas
    Evertz, Ruben
    Backhaus, Soeren J.
    Thiele, Holger
    Bueno-Orovio, Alfonso
    Lamata, Pablo
    Schuster, Andreas
    Grau, Vicente
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2022, 9
  • [23] Supervised Variational Autoencoders for Soft Sensor Modeling With Missing Data
    Xie, Ruimin
    Jan, Nabil Magbool
    Hao, Kuangrong
    Chen, Lei
    Huang, Biao
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2020, 16 (04) : 2820 - 2828
  • [24] Improved Variational Autoencoders for Text Modeling using Dilated Convolutions
    Yang, Zichao
    Hu, Zhiting
    Salakhutdinoy, Ruslan
    Berg-Kirkpatrick, Taylor
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 70, 2017, 70
  • [25] Gaussian Process Modeling of Approximate Inference Errors for Variational Autoencoders
    Kim, Minyoung
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 244 - 253
  • [26] A Benchmark of Dynamical Variational Autoencoders applied to Speech Spectrogram Modeling
    Bie, Xiaoyu
    Girin, Laurent
    Leglaive, Simon
    Hueber, Thomas
    Alameda-Pineda, Xavier
    INTERSPEECH 2021, 2021, : 46 - 50
  • [27] A VARIANCE MODELING FRAMEWORK BASED ON VARIATIONAL AUTOENCODERS FOR SPEECH ENHANCEMENT
    Leglaive, Simon
    Girin, Laurent
    Horaud, Radu
    2018 IEEE 28TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2018,
  • [28] Towards Data-Driven Volatility Modeling with Variational Autoencoders
    Dierckx, Thomas
    Davis, Jesse
    Schoutens, Wim
    MACHINE LEARNING AND PRINCIPLES AND PRACTICE OF KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT II, 2023, 1753 : 97 - 111
  • [29] A Bayesian Nonlinear Reduced Order Modeling Using Variational AutoEncoders
    Akkari, Nissrine
    Casenave, Fabien
    Hachem, Elie
    Ryckelynck, David
    FLUIDS, 2022, 7 (10)
  • [30] Deep Form Finding Using Variational Autoencoders for deep form finding of structural typologies
    de Miguel, Jaime
    Eugenia Villafane, Maria
    Piskorec, Luka
    Sancho-Caparrini, Fernando
    ECAADE SIGRADI 2019: ARCHITECTURE IN THE AGE OF THE 4TH INDUSTRIAL REVOLUTION, VOL 1, 2019, : 71 - 80