Deep variational autoencoders for breast cancer tissue modeling and synthesis in SFDI

被引:0
|
作者
Pardo, Arturo [1 ,2 ]
Lopez-Higuera, Jose M. [1 ,2 ,3 ]
Pogue, Brian W. [4 ]
Conde, Olga M. [1 ,2 ,3 ]
机构
[1] Univ Cantabria, Photon Engn Grp GIF, TEISA Dept, Edificio IDi Telecomuniac,Avda Castros S-N, E-39005 Santander, Cantabria, Spain
[2] Inst Invest Sanitaria Valdecilla IDIVAL, Santander 39011, Cantabria, Spain
[3] Biomed Res Networking Ctr Bioengn Nanomat & Nanos, Ave Monforte de Lemos,3-5 Pabellon 11,Planta 0, Madrid 28029, Spain
[4] Dartmouth Coll, Thayer Sch Engn, Hanover, NH 03755 USA
关键词
Deep learning; modulated imaging; optical properties; spatial frequency domain imaging; breast cancer; variational autoencoder; turbid media;
D O I
10.1117/12.2527142
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Extracting pathology information embedded within surface optical properties in Spatial Frequency Domain Imaging (SFDI) datasets is still a rather cumbersome nonlinear translation problem, mainly constrained by intrasample and interpatient variability, as well as dataset size. The beta-variational autoencoder (beta-VAE) is a rather novel dimensionality reduction technique where a tractable set of latent low-dimensional embeddings can be obtained from a given dataset. These embeddings can then be sampled to synthesize new data, providing further insight into pathology variability as well as differentiability in terms of optical properties. Its applications for data classification and breast margin delineation are also discussed.
引用
收藏
页数:3
相关论文
共 50 条
  • [41] Deep image hashing based on twin-bottleneck hashing with variational autoencoders
    Verwilst, Maxim
    Zizakic, Nina
    Gu, Lingchen
    Pizurica, Aleksandra
    IEEE MMSP 2021: 2021 IEEE 23RD INTERNATIONAL WORKSHOP ON MULTIMEDIA SIGNAL PROCESSING (MMSP), 2021,
  • [42] Synthesizing Data Using Variational Autoencoders for Handling Class Imbalanced Deep Learning
    Sheikh, Taimoor Shakeel
    Khan, Adil
    Fahim, Muhammad
    Ahmad, Muhammad
    ANALYSIS OF IMAGES, SOCIAL NETWORKS AND TEXTS (AIST 2019), 2020, 1086 : 270 - 281
  • [43] Deep Disease MicroRNA Association Prediction via Variational Gated Graph Autoencoders
    Guo, Yanbu
    Ma, Huan
    LI, Chaoyang
    Zhou, Dongming
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2023, 45 (05) : 1786 - 1794
  • [44] Towards inverse microstructure-centered materials design using generative phase-field modeling and deep variational autoencoders
    Attari, Vahid
    Khatamsaz, Danial
    Allaire, Douglas
    Arroyave, Raymundo
    ACTA MATERIALIA, 2023, 259
  • [45] 3D Hair Synthesis Using Volumetric Variational Autoencoders
    Saito, Shunsuke
    Hu, Liwen
    Ma, Chongyang
    Ibayashi, Hikaru
    Luo, Linjie
    Li, Hao
    SIGGRAPH ASIA'18: SIGGRAPH ASIA 2018 TECHNICAL PAPERS, 2018,
  • [46] LACTALBUMIN SYNTHESIS IN BREAST-CANCER TISSUE
    BUSSOLATI, G
    GHIRINGHELLO, B
    DICARLO, F
    AIMONE, V
    VOGLINO, GF
    LANCET, 1977, 2 (8033): : 352 - 352
  • [47] Green Generative Modeling: Recycling Dirty Data using Recurrent Variational Autoencoders
    Wang, Yu
    Dai, Bin
    Hua, Gang
    Aston, John
    Wipf, David
    CONFERENCE ON UNCERTAINTY IN ARTIFICIAL INTELLIGENCE (UAI2017), 2017,
  • [48] 3D Hair Synthesis Using Volumetric Variational Autoencoders
    Saito, Shunsuke
    Hu, Liwen
    Ma, Chongyang
    Ibayashi, Hikaru
    Luo, Linjie
    Li, Hao
    ACM TRANSACTIONS ON GRAPHICS, 2018, 37 (06):
  • [49] Modeling Breast Cancer in Human Breast Tissue using a Microphysiological System
    Brown, Loren M.
    Hebert, Katherine L.
    Gurrala, Rakesh R.
    Byrne, C. Ethan
    Burow, Matthew
    Martin, Elizabeth C.
    Lau, Frank H.
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2021, (170):
  • [50] Accelerating lensed quasar discovery and modeling with physics-informed variational autoencoders
    Andika, Irham T.
    Schuldt, Stefan
    Suyu, Sherry H.
    Bag, Satadru
    Canameras, Raoul
    Melo, Alejandra
    Grillo, Claudio
    Chan, James H. H.
    ASTRONOMY & ASTROPHYSICS, 2025, 694