Modeling Barrett's Esophagus Progression Using Geometric Variational Autoencoders

被引:0
|
作者
van Veldhuizen, Vivien [1 ]
Vadgama, Sharvaree [1 ]
de Boer, Onno [2 ]
Meijer, Sybren [2 ]
Bekkers, Erik J. [1 ]
机构
[1] Univ Amsterdam, Amsterdam, Netherlands
[2] Univ Amsterdam, Med Ctr, Amsterdam, Netherlands
关键词
Oncology; Pathology; Variational Autoencoders; Geometric Deep Learning; Equivariance; Representation Learning;
D O I
10.1007/978-3-031-45350-2_11
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Early detection of Barrett's Esophagus (BE), the only known precursor to Esophageal adenocarcinoma (EAC), is crucial for effectively preventing and treating esophageal cancer. In this work, we investigate the potential of geometric Variational Autoencoders (VAEs) to learn a meaningful latent representation that captures the progression of BE. We show that hyperspherical VAE (S- VAE) and Kendall Shape VAE show improved classification accuracy, reconstruction loss, and generative capacity. Additionally, we present a novel autoencoder architecture that can generate qualitative images without the need for a variational framework while retaining the benefits of an autoencoder, such as improved stability and reconstruction quality.
引用
收藏
页码:132 / 142
页数:11
相关论文
共 50 条
  • [1] Predictors of Progression in Barrett’s Esophagus
    Subhankar Chakraborty
    Prasad G. Iyer
    Current Treatment Options in Gastroenterology, 2019, 17 (1) : 18 - 31
  • [2] Neoplastic progression in Barrett's esophagus
    Barrett, MT
    Sanchez, CA
    Galipeau, PC
    Neshat, K
    Cowan, DS
    Levine, DS
    Reid, BJ
    GENOMIC INSTABILITY AND IMMORTALITY IN CANCER, 1997, 8 : 195 - 214
  • [3] Early Prediction of Alzheimer's Disease Progression Using Variational Autoencoders
    Basu, Sumana
    Wagstyl, Konrad
    Zandifar, Azar
    Collins, Louis
    Romero, Adriana
    Precup, Doina
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT IV, 2019, 11767 : 205 - 213
  • [4] A Geometric Perspective on Variational Autoencoders
    Chadebec, Clement
    Allassonniere, Stephanie
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [5] Barrett’s Esophagus: Model of Neoplastic Progression
    Stig Ramel
    World Journal of Surgery, 2003, 27 : 1009 - 1013
  • [6] Progression of Barrett's esophagus in the German registry
    Fuchs, KH
    Fein, M
    Maroske, J
    GASTROENTEROLOGY, 2004, 126 (04) : A795 - A795
  • [7] Barrett's esophagus: progression to adenocarcinoma and markers
    Fang, Dianchun
    Das, Kiron M.
    Cao, Weibiao
    Malhotra, Usha
    Triadafilopoulos, George
    Najarian, Robert M.
    Hardie, Laura J.
    Lightdale, Charles J.
    Beales, Ian L. P.
    Felix, Valter Nilton
    Schneider, Paul M.
    Bellizzi, Andrew M.
    BARRETT'S ESOPHAGUS: THE 10TH OESO WORLD CONGRESS PROCEEDINGS, 2011, 1232 : 210 - 229
  • [8] Barrett's esophagus: Model of neoplastic progression
    Ramel, S
    WORLD JOURNAL OF SURGERY, 2003, 27 (09) : 1009 - 1013
  • [9] Length of Barrett's Esophagus Predicts Progression
    Ngo, Catherine
    Mann, Surinder
    Leung, Joseph
    AMERICAN JOURNAL OF GASTROENTEROLOGY, 2010, 105 : S398 - S398
  • [10] Modeling and Transforming Speech using Variational Autoencoders
    Blaauw, Merlijn
    Bonada, Jordi
    17TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2016), VOLS 1-5: UNDERSTANDING SPEECH PROCESSING IN HUMANS AND MACHINES, 2016, : 1770 - 1774