An alternative point of view to the theory of fractional Fourier transform

被引:12
|
作者
Dattoli, G [1 ]
Torre, A [1 ]
Mazzacurati, G [1 ]
机构
[1] ENEA, Dipartimento Innovaz, Settore Fis Applicata, Ctr Ric Frascati, I-00044 Frascati, Italy
关键词
D O I
10.1093/imamat/60.3.215
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The concept of the fractional Fourier transform is framed within the context of quantum evolution operators. This point of view yields an extension of the above concept and greatly simplifies the underlying operational algebra. It is also proved that a multidimensional extension can be performed by using a biorthogonal multiindex harmonic oscillator basis. It is finally shown that most of the proposed physical interpretations of the fractional Fourier transform are just trivial consequences of the analysis developed in this paper.
引用
收藏
页码:215 / 224
页数:10
相关论文
共 50 条
  • [41] Multidimensional fractional Fourier transform and generalized fractional convolution
    Kamalakkannan, R.
    Roopkumar, R.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2020, 31 (02) : 152 - 165
  • [42] Novel Short-Time Fractional Fourier Transform: Theory, Implementation, and Applications
    Shi, Jun
    Zheng, Jiabin
    Liu, Xiaoping
    Xiang, Wei
    Zhang, Qinyu
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2020, 68 : 3280 - 3295
  • [43] Fractional Integrals of Fractional Fourier Transform for Integrable Boehmians
    Singh, Abhishek
    Banerji, P. K.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2018, 88 (01) : 49 - 53
  • [44] Fractional Fourier transform in the framework of fractional calculus operators
    Kilbas, A. A.
    Luchko, Yu. F.
    Martinez, H.
    Trujillo, J. J.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2010, 21 (10) : 779 - 795
  • [45] A unified framework for the fractional Fourier transform
    Cariolaro, G
    Erseghe, T
    Kraniauskas, P
    Laurenti, N
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1998, 46 (12) : 3206 - 3219
  • [46] A novel discrete fractional Fourier transform
    Tao, R
    Ping, XJ
    Shen, Y
    Zhao, XH
    2001 CIE INTERNATIONAL CONFERENCE ON RADAR PROCEEDINGS, 2001, : 1027 - 1030
  • [47] THE FRACTIONAL QUATERNION FOURIER NUMBER TRANSFORM
    da Silva, Luiz C.
    de Oliveira Neto, Jose R.
    Lima, Juliano B.
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 5610 - 5614
  • [48] Random Discrete Fractional Fourier Transform
    Pei, Soo-Chang
    Hsue, Wen-Liang
    IEEE SIGNAL PROCESSING LETTERS, 2009, 16 (12) : 1015 - 1018
  • [49] THE FINITE FIELD FRACTIONAL FOURIER TRANSFORM
    Lima, Juliano B.
    Campello de Souza, Ricardo M.
    2010 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2010, : 3670 - 3673
  • [50] The Fractional Fourier Transform and Harmonic Oscillation
    M. Alper Kutay
    Haldun M. Ozaktas
    Nonlinear Dynamics, 2002, 29 : 157 - 172