An alternative point of view to the theory of fractional Fourier transform

被引:12
|
作者
Dattoli, G [1 ]
Torre, A [1 ]
Mazzacurati, G [1 ]
机构
[1] ENEA, Dipartimento Innovaz, Settore Fis Applicata, Ctr Ric Frascati, I-00044 Frascati, Italy
关键词
D O I
10.1093/imamat/60.3.215
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The concept of the fractional Fourier transform is framed within the context of quantum evolution operators. This point of view yields an extension of the above concept and greatly simplifies the underlying operational algebra. It is also proved that a multidimensional extension can be performed by using a biorthogonal multiindex harmonic oscillator basis. It is finally shown that most of the proposed physical interpretations of the fractional Fourier transform are just trivial consequences of the analysis developed in this paper.
引用
收藏
页码:215 / 224
页数:10
相关论文
共 50 条
  • [11] Operator theory-based discrete fractional Fourier transform
    Koc, Aykut
    SIGNAL IMAGE AND VIDEO PROCESSING, 2019, 13 (07) : 1461 - 1468
  • [12] Operator theory-based discrete fractional Fourier transform
    Aykut Koç
    Signal, Image and Video Processing, 2019, 13 : 1461 - 1468
  • [13] On fractional Fourier transform moments
    Alieva, T
    Bastiaans, MJ
    IEEE SIGNAL PROCESSING LETTERS, 2000, 7 (11) : 320 - 323
  • [14] Fractional finite Fourier transform
    Khare, K
    George, N
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2004, 21 (07) : 1179 - 1185
  • [15] Discrete fractional Fourier transform
    Pei, SC
    Yeh, MH
    ISCAS 96: 1996 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS - CIRCUITS AND SYSTEMS CONNECTING THE WORLD, VOL 2, 1996, : 536 - 539
  • [16] THE GENERALIZED FRACTIONAL FOURIER TRANSFORM
    Pei, Soo-Chang
    Liu, Chun-Lin
    Lai, Yun-Chiu
    2012 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2012, : 3705 - 3708
  • [17] Deep Fractional Fourier Transform
    Yu, Hu
    Huang, Jie
    Li, Lingzhi
    Zhou, Man
    Zhao, Feng
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [18] Trainable Fractional Fourier Transform
    Koc, Emirhan
    Alikasifoglu, Tuna
    Aras, Arda Can
    Koc, Aykut
    IEEE Signal Processing Letters, 2024, 31 : 751 - 755
  • [19] The Fractional Fourier Transform on Graphs
    Wang, Yi-qian
    Li, Bing-zhao
    Cheng, Qi-yuan
    2017 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC 2017), 2017, : 105 - 110
  • [20] Random fractional Fourier transform
    Liu, Zhengjun
    Liu, Shutian
    OPTICS LETTERS, 2007, 32 (15) : 2088 - 2090