An alternative point of view to the theory of fractional Fourier transform

被引:12
|
作者
Dattoli, G [1 ]
Torre, A [1 ]
Mazzacurati, G [1 ]
机构
[1] ENEA, Dipartimento Innovaz, Settore Fis Applicata, Ctr Ric Frascati, I-00044 Frascati, Italy
关键词
D O I
10.1093/imamat/60.3.215
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The concept of the fractional Fourier transform is framed within the context of quantum evolution operators. This point of view yields an extension of the above concept and greatly simplifies the underlying operational algebra. It is also proved that a multidimensional extension can be performed by using a biorthogonal multiindex harmonic oscillator basis. It is finally shown that most of the proposed physical interpretations of the fractional Fourier transform are just trivial consequences of the analysis developed in this paper.
引用
收藏
页码:215 / 224
页数:10
相关论文
共 50 条
  • [21] The fractional Fourier transform: A tutorial
    Mendlovic, D
    PROCEEDINGS OF THE IEEE-EURASIP WORKSHOP ON NONLINEAR SIGNAL AND IMAGE PROCESSING (NSIP'99), 1999, : 476 - 480
  • [22] Discrete fractional Fourier transform
    Candan, Cagatay
    Kutay, M.Alper
    Ozaktas, Haldun M.
    ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, 1999, 3 : 1713 - 1716
  • [23] The discrete fractional Fourier transform
    Candan, C
    Kutay, MA
    Ozaktas, HM
    ICASSP '99: 1999 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, PROCEEDINGS VOLS I-VI, 1999, : 1713 - 1716
  • [24] Fractional Fourier Transform: A Survey
    Krishna, B. T.
    PROCEEDINGS OF THE 2012 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI'12), 2012, : 751 - 757
  • [25] Fractional Fourier Transform Reflectometry
    Shiloh, Lihi
    Eyal, Avishay
    23RD INTERNATIONAL CONFERENCE ON OPTICAL FIBRE SENSORS, 2014, 9157
  • [26] Trainable Fractional Fourier Transform
    Koc, Emirhan
    Alikasifoglu, Tuna
    Aras, Arda Can
    Koc, Aykut
    IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 751 - 755
  • [27] The discrete fractional Fourier transform
    Candan, Ç
    Kutay, MA
    Ozaktas, HM
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2000, 48 (05) : 1329 - 1337
  • [28] Computation of the fractional Fourier transform
    Bultheel, A
    Martinez Sulbaran HE
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2004, 16 (03) : 182 - 202
  • [29] Fractional Fourier transform in optics
    Mendlovic, D
    Ozaktas, HM
    18TH CONGRESS OF THE INTERNATIONAL COMMISSION FOR OPTICS: OPTICS FOR THE NEXT MILLENNIUM, TECHNICAL DIGEST, 1999, 3749 : 40 - 41
  • [30] Quaternion Fractional Fourier Transform: Bridging Signal Processing and Probability Theory
    Samad, Muhammad Adnan
    Xia, Yuanqing
    Siddiqui, Saima
    Bhat, Muhammad Younus
    Urynbassarova, Didar
    Urynbassarova, Altyn
    MATHEMATICS, 2025, 13 (02)