Fractional Integrals of Fractional Fourier Transform for Integrable Boehmians

被引:3
|
作者
Singh, Abhishek [1 ,2 ]
Banerji, P. K. [3 ]
机构
[1] Banaras Hindu Univ, DST CIMS, Varanasi, Uttar Pradesh, India
[2] Amity Univ, AIAS, Noida, Uttar Pradesh, India
[3] JN Vyas Univ, Dept Math, Jodhpur, Rajasthan, India
关键词
Fourier transform; Fractional Fourier transform; Fractional derivatives and integrals; Calculus of Mikusinski and other operational calculi; Distribution spaces; Boehmians;
D O I
10.1007/s40010-016-0329-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
With an abridged introductory note on the fractional Fourier transform, this paper attempts to study the same for integrable Boehmians with regard to fractional integrals. Some relevant properties are also established.
引用
收藏
页码:49 / 53
页数:5
相关论文
共 50 条
  • [1] Fractional Integrals of Fractional Fourier Transform for Integrable Boehmians
    Abhishek Singh
    P. K. Banerji
    Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2018, 88 : 49 - 53
  • [2] Wavelet Transform of Fractional Integrals for Integrable Boehmians
    Loonker, Deshna
    Banerji, P. K.
    Kalla, S. L.
    APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2010, 5 (01): : 1 - 10
  • [3] Quaternionic Fractional Fourier Transform for Boehmians
    R. Roopkumar
    Ukrainian Mathematical Journal, 2020, 72 : 942 - 952
  • [4] Quaternionic Fractional Fourier Transform for Boehmians
    Roopkumar, R.
    UKRAINIAN MATHEMATICAL JOURNAL, 2020, 72 (06) : 942 - 952
  • [5] Cauchy Representation of Fractional Fourier Transform for Boehmians
    Singh, Abhishek
    Banerji, P. K.
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2020, 38 (01): : 55 - 65
  • [6] Fourier transform on integrable Boehmians
    Karunakaran, V.
    Ganesan, C.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2009, 20 (12) : 937 - 941
  • [7] Hartley transform for integrable Boehmians
    Loonker, Deshna
    Banerjia, P. K.
    Debnath, Lokenath
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2010, 21 (06) : 459 - 464
  • [8] Boehmians and Fourier transform
    Karunakaran, V
    Kalpakam, NV
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2000, 9 (03) : 197 - 216
  • [9] Z - transform for integrable Boehmians
    Loonker, Deshna
    TBILISI MATHEMATICAL JOURNAL, 2020, 13 (02) : 179 - 185
  • [10] Some general properties of a fractional Sumudu transform in the class of Boehmians
    Al-Omari, Shrideh K. Qasem
    Agarwal, Praveen
    KUWAIT JOURNAL OF SCIENCE, 2016, 43 (02) : 16 - 30