Fractional Integrals of Fractional Fourier Transform for Integrable Boehmians

被引:3
|
作者
Singh, Abhishek [1 ,2 ]
Banerji, P. K. [3 ]
机构
[1] Banaras Hindu Univ, DST CIMS, Varanasi, Uttar Pradesh, India
[2] Amity Univ, AIAS, Noida, Uttar Pradesh, India
[3] JN Vyas Univ, Dept Math, Jodhpur, Rajasthan, India
关键词
Fourier transform; Fractional Fourier transform; Fractional derivatives and integrals; Calculus of Mikusinski and other operational calculi; Distribution spaces; Boehmians;
D O I
10.1007/s40010-016-0329-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
With an abridged introductory note on the fractional Fourier transform, this paper attempts to study the same for integrable Boehmians with regard to fractional integrals. Some relevant properties are also established.
引用
收藏
页码:49 / 53
页数:5
相关论文
共 50 条
  • [41] A class of fractional integral transforms: A generalization of the fractional Fourier transform
    Zayed, AI
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (03) : 619 - 627
  • [42] Unitary and Hermitian fractional operators and their relation to the fractional Fourier transform
    Akay, O
    Boudreaux-Bartels, GF
    IEEE SIGNAL PROCESSING LETTERS, 1998, 5 (12) : 312 - 314
  • [43] Properties of fractional correlation peak based on fractional Fourier transform
    Zhu, Banghe
    Han, Li
    Xie, Hongwei
    Liu, Shutian
    Guangzi Xuebao/Acta Photonica Sinica, 1999, 28 (10): : 910 - 914
  • [44] The properties of fractional correlation peak based on fractional Fourier transform
    Zhu, BH
    Han, L
    Xie, HW
    Liu, ST
    ICEMI'99: FOURTH INTERNATIONAL CONFERENCE ON ELECTRONIC MEASUREMENT & INSTRUMENTS, VOLS 1 AND 2, CONFERENCE PROCEEDINGS, 1999, : 868 - 872
  • [45] Fractional correlations based on the modified fractional order Fourier transform
    Almanasreh, AM
    Abushagur, MAG
    OPTICAL ENGINEERING, 1998, 37 (01) : 175 - 184
  • [46] A study on fractional differential equations using the fractional Fourier transform
    Hammachukiattikul, Porpattama
    Mohanapriya, Arusamy
    Ganesh, Anumanthappa
    Rajchakit, Grienggrai
    Govindan, Vediyappan
    Gunasekaran, Nallappan
    Lim, Chee Peng
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [47] A study on fractional differential equations using the fractional Fourier transform
    Porpattama Hammachukiattikul
    Arusamy Mohanapriya
    Anumanthappa Ganesh
    Grienggrai Rajchakit
    Vediyappan Govindan
    Nallappan Gunasekaran
    Chee Peng Lim
    Advances in Difference Equations, 2020
  • [48] Sampling of fractional bandlimited signals associated with fractional Fourier transform
    Wei, Deyun
    Ran, Qiwen
    Li, Yuanmin
    OPTIK, 2012, 123 (02): : 137 - 139
  • [49] ABOUT FRACTIONAL INTEGRALS IN THE SPACE OF LOCALLY INTEGRABLE FUNCTIONS
    MARTINEZ, C
    SANZ, M
    MARTINEZ, MD
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1992, 167 (01) : 111 - 122
  • [50] A unified framework for the fractional Fourier transform
    Cariolaro, G
    Erseghe, T
    Kraniauskas, P
    Laurenti, N
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1998, 46 (12) : 3206 - 3219