Fractional Integrals of Fractional Fourier Transform for Integrable Boehmians

被引:3
|
作者
Singh, Abhishek [1 ,2 ]
Banerji, P. K. [3 ]
机构
[1] Banaras Hindu Univ, DST CIMS, Varanasi, Uttar Pradesh, India
[2] Amity Univ, AIAS, Noida, Uttar Pradesh, India
[3] JN Vyas Univ, Dept Math, Jodhpur, Rajasthan, India
关键词
Fourier transform; Fractional Fourier transform; Fractional derivatives and integrals; Calculus of Mikusinski and other operational calculi; Distribution spaces; Boehmians;
D O I
10.1007/s40010-016-0329-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
With an abridged introductory note on the fractional Fourier transform, this paper attempts to study the same for integrable Boehmians with regard to fractional integrals. Some relevant properties are also established.
引用
收藏
页码:49 / 53
页数:5
相关论文
共 50 条
  • [31] Fractional Fourier transform in the framework of fractional calculus operators
    Kilbas, A. A.
    Luchko, Yu. F.
    Martinez, H.
    Trujillo, J. J.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2010, 21 (10) : 779 - 795
  • [32] Relationship Between Fractional Calculus and Fractional Fourier Transform
    Zhang, Yanshan
    Zhang, Feng
    Lu, Mingfeng
    SIGNAL AND DATA PROCESSING OF SMALL TARGETS 2015, 2015, 9596
  • [33] RIDGELET TRANSFORM ON SQUARE INTEGRABLE BOEHMIANS
    Roopkumar, Rajakumar
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2009, 46 (05) : 835 - 844
  • [34] CONVOLUTION THEOREMS FOR FRACTIONAL FOURIER COSINE AND SINE TRANSFORMS AND THEIR EXTENSIONS TO BOEHMIANS
    Ganesan, Chinnaraman
    Roopkumar, Rajakumar
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2016, 31 (04): : 791 - 809
  • [35] Hilbert transform associated with the fractional Fourier transform
    Zayed, AI
    IEEE SIGNAL PROCESSING LETTERS, 1998, 5 (08) : 206 - 208
  • [36] Joint transform correlator with fractional Fourier transform
    Jin, SI
    Lee, SY
    OPTICS COMMUNICATIONS, 2002, 207 (1-6) : 161 - 168
  • [37] Hilbert transform associated with the fractional Fourier transform
    Univ of Central Florida, Orlando, United States
    IEEE Signal Process Lett, 8 (206-208):
  • [38] Deriving the integral representation of a fractional Hankel transform from a fractional Fourier transform
    Yu, L
    Lu, YY
    Zeng, XM
    Huang, MC
    Chen, MZ
    Huang, WD
    Zhu, ZZ
    OPTICS LETTERS, 1998, 23 (15) : 1158 - 1160
  • [39] The scale of the Fourier transform: a point of view of the fractional Fourier transform
    Jimenez, C. J.
    Vilardy, J. M.
    Salinas, S.
    Mattos, L.
    Torres, C.
    VIII INTERNATIONAL CONGRESS OF ENGINEERING PHYSICS, 2017, 792
  • [40] Fractional Fourier transform of the Gaussian and fractional domain signal support
    Capus, C
    Brown, K
    IEE PROCEEDINGS-VISION IMAGE AND SIGNAL PROCESSING, 2003, 150 (02): : 99 - 106