A Contrastive Divergence for Combining Variational Inference and MCMC

被引:0
|
作者
Ruiz, Francisco J. R. [1 ,2 ]
Titsias, Michalis K. [3 ]
机构
[1] Univ Cambridge, Cambridge, England
[2] Columbia Univ, New York, NY 10027 USA
[3] DeepMind, London, England
来源
INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97 | 2019年 / 97卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We develop a method to combine Markov chain Monte Carlo (MCMC) and variational inference (VI), leveraging the advantages of both inference approaches. Specifically, we improve the variational distribution by running a few MCMC steps. To make inference tractable, we introduce the variational contrastive divergence (VCD), a new divergence that replaces the standard Kullback-Leibler (KL) divergence used in VI. The VCD captures a notion of discrepancy between the initial variational distribution and its improved version (obtained after running the MCMC steps), and it converges asymptotically to the symmetrized KL divergence between the variational distribution and the posterior of interest. The VCD objective can be optimized efficiently with respect to the variational parameters via stochastic optimization. We show experimentally that optimizing the VCD leads to better predictive performance on two latent variable models: logistic matrix factorization and variational autoencoders (VAEs).
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Operator Variational Inference
    Ranganath, Rajesh
    Altosaar, Jaan
    Tran, Dustin
    Blei, David M.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [42] Nested Variational Inference
    Zimmermann, Heiko
    Wu, Hao
    Esmaeili, Babak
    Van de Meent, Jan-Willem
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [43] Mixed Variational Inference
    Gianniotis, Nikolaos
    2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [44] Advances in Variational Inference
    Zhang, Cheng
    Butepage, Judith
    Kjellstrom, Hedvig
    Mandt, Stephan
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2019, 41 (08) : 2008 - 2026
  • [45] Gauging variational inference
    Ahn, Sungsoo
    Chertkov, Michael
    Shin, Jinwoo
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2019, 2019 (12):
  • [46] Gauging Variational Inference
    Ahn, Sungsoo
    Chertkov, Michael
    Shin, Jinwoo
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [47] Mutual Variational Inference: An Indirect Variational Inference Approach for Unsupervised Domain Adaptation
    Chen, Jiahong
    Wang, Jing
    de Silva, Clarence W.
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (11) : 11491 - 11503
  • [48] Combining reservoir computing and variational inference for efficient one-class learning on dynamical systems
    Cabrera, Diego
    Sancho, Fernando
    Tobar, Felipe
    2017 INTERNATIONAL CONFERENCE ON SENSING, DIAGNOSTICS, PROGNOSTICS, AND CONTROL (SDPC), 2017, : 57 - 62
  • [49] Learning variational autoencoders via MCMC speed measures
    Hirt, Marcel
    Kreouzis, Vasileios
    Dellaportas, Petros
    STATISTICS AND COMPUTING, 2024, 34 (05)
  • [50] Contrastive Divergence Learning for the Restricted Boltzmann Machine
    Liu, Jian-Wei
    Chi, Guang-Hui
    Luo, Xiong-Lin
    2013 NINTH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION (ICNC), 2013, : 18 - 22