A Contrastive Divergence for Combining Variational Inference and MCMC

被引:0
|
作者
Ruiz, Francisco J. R. [1 ,2 ]
Titsias, Michalis K. [3 ]
机构
[1] Univ Cambridge, Cambridge, England
[2] Columbia Univ, New York, NY 10027 USA
[3] DeepMind, London, England
来源
INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97 | 2019年 / 97卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We develop a method to combine Markov chain Monte Carlo (MCMC) and variational inference (VI), leveraging the advantages of both inference approaches. Specifically, we improve the variational distribution by running a few MCMC steps. To make inference tractable, we introduce the variational contrastive divergence (VCD), a new divergence that replaces the standard Kullback-Leibler (KL) divergence used in VI. The VCD captures a notion of discrepancy between the initial variational distribution and its improved version (obtained after running the MCMC steps), and it converges asymptotically to the symmetrized KL divergence between the variational distribution and the posterior of interest. The VCD objective can be optimized efficiently with respect to the variational parameters via stochastic optimization. We show experimentally that optimizing the VCD leads to better predictive performance on two latent variable models: logistic matrix factorization and variational autoencoders (VAEs).
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Alpha-divergence Variational Inference Meets Importance Weighted Auto-Encoders: Methodology and Asymptotics
    Daudel, Kamelia
    Benton, Joe
    Shi, Yuyang
    Doucet, Arnaud
    JOURNAL OF MACHINE LEARNING RESEARCH, 2023, 24
  • [32] Stochastic Variational Inference
    Hoffman, Matthew D.
    Blei, David M.
    Wang, Chong
    Paisley, John
    JOURNAL OF MACHINE LEARNING RESEARCH, 2013, 14 : 1303 - 1347
  • [33] Quantized Variational Inference
    Dib, Amir
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [34] Stochastic variational inference
    Hoffman, Matthew D.
    Blei, David M.
    Wang, Chong
    Paisley, John
    1600, Microtome Publishing (14): : 1303 - 1347
  • [35] Copula variational inference
    Tran, Dustin
    Blei, David M.
    Airoldi, Edoardo M.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015), 2015, 28
  • [36] Wasserstein Variational Inference
    Ambrogioni, Luca
    Guclu, Umut
    Gucluturk, Yagmur
    Hinne, Max
    Maris, Eric
    van Gerven, Marcel A. J.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [37] Geometric Variational Inference
    Frank, Philipp
    Leike, Reimar
    Ensslin, Torsten A.
    ENTROPY, 2021, 23 (07)
  • [38] Proximity Variational Inference
    Altosaar, Jaan
    Ranganath, Rajesh
    Blei, David M.
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 84, 2018, 84
  • [39] Variational Noise-Contrastive Estimation
    Rhodes, Benjamin
    Gutmann, Michael U.
    22ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 89, 2019, 89
  • [40] Generative Oversampling with a Contrastive Variational Autoencoder
    Dai, Wangzhi
    Ng, Kenney
    Severson, Kristen A.
    Huang, Wei
    Anderson, Fred
    Stultz, Collin M.
    2019 19TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2019), 2019, : 101 - 109