A Contrastive Divergence for Combining Variational Inference and MCMC

被引:0
|
作者
Ruiz, Francisco J. R. [1 ,2 ]
Titsias, Michalis K. [3 ]
机构
[1] Univ Cambridge, Cambridge, England
[2] Columbia Univ, New York, NY 10027 USA
[3] DeepMind, London, England
来源
INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97 | 2019年 / 97卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We develop a method to combine Markov chain Monte Carlo (MCMC) and variational inference (VI), leveraging the advantages of both inference approaches. Specifically, we improve the variational distribution by running a few MCMC steps. To make inference tractable, we introduce the variational contrastive divergence (VCD), a new divergence that replaces the standard Kullback-Leibler (KL) divergence used in VI. The VCD captures a notion of discrepancy between the initial variational distribution and its improved version (obtained after running the MCMC steps), and it converges asymptotically to the symmetrized KL divergence between the variational distribution and the posterior of interest. The VCD objective can be optimized efficiently with respect to the variational parameters via stochastic optimization. We show experimentally that optimizing the VCD leads to better predictive performance on two latent variable models: logistic matrix factorization and variational autoencoders (VAEs).
引用
收藏
页数:9
相关论文
共 50 条
  • [21] On the connection between Noise-Contrastive Estimation and Contrastive Divergence
    Olmin, Amanda
    Lindqvist, Jakob
    Svensson, Lennart
    Lindsten, Fredrik
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 238, 2024, 238
  • [22] Contrastive Learning for Inference in Dialogue
    Ishii, Etsuko
    Xu, Yan
    Wilie, Bryan
    Ji, Ziwei
    Lovenia, Holy
    Chung, Willy
    Fung, Pascale
    2023 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2023), 2023, : 10202 - 10221
  • [23] Stochastic Divergence Minimization for Online Collapsed Variational Bayes Zero Inference of Latent Dirichlet Allocation
    Sato, Issei
    Nakagawa, Hiroshi
    KDD'15: PROCEEDINGS OF THE 21ST ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2015, : 1035 - 1044
  • [24] Alleviating Adversarial Attacks on Variational Autoencoders with MCMC
    Kuzina, Anna
    Welling, Max
    Tomczak, Jakub M.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [25] Bounding the Bias of Contrastive Divergence Learning
    Fischer, Asja
    Igel, Christian
    NEURAL COMPUTATION, 2011, 23 (03) : 664 - 673
  • [26] Adiabatic Persistent Contrastive Divergence Learning
    Jang, Hyeryung
    Choi, Hyungwon
    Yi, Yung
    Shin, Jinwoo
    2017 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2017,
  • [27] Pseudo-Spherical Contrastive Divergence
    Yu, Lantao
    Song, Jiaming
    Song, Yang
    Ermon, Stefano
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [28] ggmcmc: Analysis of MCMC Samples and Bayesian Inference
    Fernandez-i-Marin, Xavier
    JOURNAL OF STATISTICAL SOFTWARE, 2016, 70 (09):
  • [29] Identifiability of parameters in MCMC Bayesian inference of phylogeny
    Rannala, B
    SYSTEMATIC BIOLOGY, 2002, 51 (05) : 754 - 760
  • [30] Adaptive MCMC via Combining Local Samplers
    Shaloudegi, Kiarash
    Gyorgy, Andras
    22ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 89, 2019, 89