Gauging variational inference

被引:0
|
作者
Ahn, Sungsoo [1 ]
Chertkov, Michael [2 ]
Shin, Jinwoo [3 ]
机构
[1] Korea Adv Inst Sci & Technol, Sch Elect Engn, Daejeon, South Korea
[2] Univ Arizona, Program Appl Math, Tucson, AZ 85719 USA
[3] Korea Adv Inst Sci & Technol, Grad Sch AI, Daejeon, South Korea
来源
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT | 2019年 / 2019卷 / 12期
关键词
machine learning; PROPAGATION; GRAPHS; CODES;
D O I
10.1088/1742-5468/ab3217
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Computing of partition function is the most important statistical inference task arising in applications of graphical models (GM). Since it is computationally intractable, approximate methods have been used in practice, where mean-field (MF) and belief propagation (BP) are arguably the most popular and successful approaches of a variational type. In this paper, we propose two new variational schemes, coined Gauged-MF (G-MF) and Gauged-BP (G-BP), improving MF and BP, respectively. Both provide lower bounds for the partition function by utilizing the so-called gauge transformation which modifies factors of GM while keeping the partition function invariant. Moreover, we prove that both G-MF and G-BP are exact for GMs with a single loop of a special structure, even though the bare MF and BP perform badly in this case. Our extensive experiments indeed confirm that the proposed algorithms outperform and generalize MF and BP.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Gauging Variational Inference
    Ahn, Sungsoo
    Chertkov, Michael
    Shin, Jinwoo
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [2] Stochastic Variational Inference
    Hoffman, Matthew D.
    Blei, David M.
    Wang, Chong
    Paisley, John
    JOURNAL OF MACHINE LEARNING RESEARCH, 2013, 14 : 1303 - 1347
  • [3] Quantized Variational Inference
    Dib, Amir
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [4] Stochastic variational inference
    Hoffman, Matthew D.
    Blei, David M.
    Wang, Chong
    Paisley, John
    1600, Microtome Publishing (14): : 1303 - 1347
  • [5] Copula variational inference
    Tran, Dustin
    Blei, David M.
    Airoldi, Edoardo M.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015), 2015, 28
  • [6] Wasserstein Variational Inference
    Ambrogioni, Luca
    Guclu, Umut
    Gucluturk, Yagmur
    Hinne, Max
    Maris, Eric
    van Gerven, Marcel A. J.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [7] Geometric Variational Inference
    Frank, Philipp
    Leike, Reimar
    Ensslin, Torsten A.
    ENTROPY, 2021, 23 (07)
  • [8] Proximity Variational Inference
    Altosaar, Jaan
    Ranganath, Rajesh
    Blei, David M.
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 84, 2018, 84
  • [9] Operator Variational Inference
    Ranganath, Rajesh
    Altosaar, Jaan
    Tran, Dustin
    Blei, David M.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [10] Nested Variational Inference
    Zimmermann, Heiko
    Wu, Hao
    Esmaeili, Babak
    Van de Meent, Jan-Willem
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34