Affirmative Solutions on Local Antimagic Chromatic Number

被引:18
|
作者
Lau, Gee-Choon [1 ]
Ng, Ho-Kuen [2 ]
Shiu, Wai-Chee [3 ,4 ]
机构
[1] Univ Teknol MARA, Fac Comp & Math Sci, Segamat Campus, Johor Baharu, Malaysia
[2] San Jose State Univ, Dept Math, San Jose, CA 95192 USA
[3] Chinese Univ Hong Kong, Dept Math, Hong Kong, Peoples R China
[4] Beijing Inst Technol, Coll Global Talents, Zhuhai, Peoples R China
关键词
Local antimagic labeling; Local antimagic chromatic number;
D O I
10.1007/s00373-020-02197-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An edge labeling of a connected graphG = (V,E) is said to be local antimagic if it is a bijectionf:E ->{1, horizontal ellipsis ,|E|} such that for any pair of adjacent verticesxandy,f+(x)not equal f+(y), where the induced vertex labelf+(x)= n-ary sumation f(e), witheranging over all the edges incident tox. The local antimagic chromatic number of G, denoted by chi(la)(G), is the minimum number of distinct induced vertex labels over all local antimagic labelings of G. In this paper, we give counterexamples to the lower bound of chi(la)(G proves O2) that was obtained in [Local antimagic vertex coloring of a graph, Graphs Combin. 33:275-285 (2017)]. A sharp lower bound of chi(la)(G proves On) and sufficient conditions for the given lower bound to be attained are obtained. Moreover, we settled Theorem 2.15 and solved Problem 3.3 in the affirmative. We also completely determined the local antimagic chromatic number of complete bipartite graphs.
引用
收藏
页码:1337 / 1354
页数:18
相关论文
共 50 条
  • [31] Approaches that output infinitely many graphs with small local antimagic chromatic number
    Lau, Gee-Choon
    Li, Jianxi
    Shiu, Wai-Chee
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2023, 15 (02)
  • [32] The chromatic number of local antimagic total edge coloring of some related cycle graphs
    Kurniawati, E. Y.
    Dafik
    Agustin, I. H.
    Prihandini, R. M.
    Nisviasari, R.
    FIRST INTERNATIONAL CONFERENCE ON ENVIRONMENTAL GEOGRAPHY AND GEOGRAPHY EDUCATION (ICEGE), 2019, 243
  • [33] On the vertex local antimagic total labeling chromatic number of G ⊙ K2
    Kurniawati, E. Y.
    Agustin, I. H.
    Dafik
    Marsidi
    2ND INTERNATIONAL CONFERENCE OF COMBINATORICS, GRAPH THEORY, AND NETWORK TOPOLOGY, 2019,
  • [34] The Local Antimagic Chromatic Numbers of Some Join Graphs
    Yang, Xue
    Bian, Hong
    Yu, Haizheng
    Liu, Dandan
    MATHEMATICAL AND COMPUTATIONAL APPLICATIONS, 2021, 26 (04)
  • [35] On (a, d)-edge local antimagic coloring number of graphs
    Sundaramoorthy, Rajkumar
    Moviri Chettiar, Nalliah
    TURKISH JOURNAL OF MATHEMATICS, 2022, 46 (05) : 1994 - 2002
  • [36] On the local distinguishing chromatic number
    Khormali, Omid
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2019, 16 (02) : 172 - 181
  • [37] Local chromatic number of quadrangulations of surfaces
    Mohar, Bojan
    Simonyi, Gabor
    Tardos, Gabor
    COMBINATORICA, 2013, 33 (04) : 467 - 494
  • [38] Chromatic number is not tournament-local
    Girao, Antonio
    Hendrey, Kevin
    Illingworth, Freddie
    Lehner, Florian
    Michel, Lukas
    Savery, Michael
    Steiner, Raphael
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2024, 168 : 86 - 95
  • [39] Local chromatic number of quadrangulations of surfaces
    Bojan Mohar
    Gábor Simonyi
    Gábor Tardos
    Combinatorica, 2013, 33 : 467 - 494
  • [40] Local chromatic number and Sperner capacity
    Körner, J
    Pilotto, C
    Simonyi, G
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2005, 95 (01) : 101 - 117