Chromatic number is not tournament-local

被引:1
|
作者
Girao, Antonio [1 ]
Hendrey, Kevin [2 ]
Illingworth, Freddie [1 ,6 ]
Lehner, Florian [3 ]
Michel, Lukas [1 ]
Savery, Michael [1 ,4 ]
Steiner, Raphael [5 ]
机构
[1] Univ Oxford, Math Inst, Oxford, England
[2] Inst for Basic Sci Korea, Daejeon, South Korea
[3] Univ Auckland, Dept Math, Auckland, New Zealand
[4] Heilbronn Inst Math Res, Bristol, England
[5] Swiss Fed Inst Technol, Inst Theoret Comp Sci, Zurich, Switzerland
[6] UCL, Dept Math, London, England
基金
英国工程与自然科学研究理事会;
关键词
Chromatic number; Tournaments; Schrijver graphs; Degeneracy; SHORT PROOF;
D O I
10.1016/j.jctb.2024.04.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Scott and Seymour conjectured the existence of a function f: N -> Nsuch that, for every graph Gand tournament T on the same vertex set, chi(G) >= f(k) implies that chi(G[N-T(+)(v)]) > k for some vertex v. In this note we disprove this conjecture even if vis replaced by a vertex set of size O(log vertical bar V(G)vertical bar). As a consequence, we answer in the negative a question of Harutyunyan, Le, Thomasse, and Wu concerning the corresponding statement where the graph Gis replaced by another tournament, and disprove a related conjecture of Nguyen, Scott, and Seymour. We also show that the setting where chromatic number is replaced by degeneracy exhibits a quite different behaviour. (c) 2024 The Authors. Published by Elsevier Inc.
引用
收藏
页码:86 / 95
页数:10
相关论文
共 50 条
  • [1] On the local distinguishing chromatic number
    Khormali, Omid
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2019, 16 (02) : 172 - 181
  • [2] On number of pendants in local antimagic chromatic number
    Lau, Gee-Choon
    Shiu, Wai-Chee
    Ng, Ho-Kuen
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2022, 25 (08): : 2673 - 2682
  • [3] Local chromatic number of quadrangulations of surfaces
    Mohar, Bojan
    Simonyi, Gabor
    Tardos, Gabor
    COMBINATORICA, 2013, 33 (04) : 467 - 494
  • [4] Local chromatic number of quadrangulations of surfaces
    Bojan Mohar
    Gábor Simonyi
    Gábor Tardos
    Combinatorica, 2013, 33 : 467 - 494
  • [5] Local chromatic number and Sperner capacity
    Körner, J
    Pilotto, C
    Simonyi, G
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2005, 95 (01) : 101 - 117
  • [6] Local antimagic chromatic number of trees - I
    Premalatha, K.
    Arumugam, S.
    Lee, Yi-Chun
    Wang, Tao-Ming
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2022, 25 (06): : 1591 - 1602
  • [7] On modulo local antimagic chromatic number of graphs
    Li, Jianxi
    Lau, Gee-Choon
    Shiu, Wai-Chee
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2022, 25 (08): : 2519 - 2533
  • [8] On local antimagic chromatic number of spider graphs
    Lau, Gee-Choon
    Shiu, Wai-Chee
    Soo, Chee-Xian
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2023, 26 (02): : 303 - 339
  • [9] Affirmative Solutions on Local Antimagic Chromatic Number
    Gee-Choon Lau
    Ho-Kuen Ng
    Wai-Chee Shiu
    Graphs and Combinatorics, 2020, 36 : 1337 - 1354
  • [10] Affirmative Solutions on Local Antimagic Chromatic Number
    Lau, Gee-Choon
    Ng, Ho-Kuen
    Shiu, Wai-Chee
    GRAPHS AND COMBINATORICS, 2020, 36 (05) : 1337 - 1354