Chromatic number is not tournament-local

被引:1
|
作者
Girao, Antonio [1 ]
Hendrey, Kevin [2 ]
Illingworth, Freddie [1 ,6 ]
Lehner, Florian [3 ]
Michel, Lukas [1 ]
Savery, Michael [1 ,4 ]
Steiner, Raphael [5 ]
机构
[1] Univ Oxford, Math Inst, Oxford, England
[2] Inst for Basic Sci Korea, Daejeon, South Korea
[3] Univ Auckland, Dept Math, Auckland, New Zealand
[4] Heilbronn Inst Math Res, Bristol, England
[5] Swiss Fed Inst Technol, Inst Theoret Comp Sci, Zurich, Switzerland
[6] UCL, Dept Math, London, England
基金
英国工程与自然科学研究理事会;
关键词
Chromatic number; Tournaments; Schrijver graphs; Degeneracy; SHORT PROOF;
D O I
10.1016/j.jctb.2024.04.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Scott and Seymour conjectured the existence of a function f: N -> Nsuch that, for every graph Gand tournament T on the same vertex set, chi(G) >= f(k) implies that chi(G[N-T(+)(v)]) > k for some vertex v. In this note we disprove this conjecture even if vis replaced by a vertex set of size O(log vertical bar V(G)vertical bar). As a consequence, we answer in the negative a question of Harutyunyan, Le, Thomasse, and Wu concerning the corresponding statement where the graph Gis replaced by another tournament, and disprove a related conjecture of Nguyen, Scott, and Seymour. We also show that the setting where chromatic number is replaced by degeneracy exhibits a quite different behaviour. (c) 2024 The Authors. Published by Elsevier Inc.
引用
收藏
页码:86 / 95
页数:10
相关论文
共 50 条
  • [21] LOCAL CHROMATIC NUMBER AND DISTINGUISHING THE STRENGTH OF TOPOLOGICAL OBSTRUCTIONS
    Simonyi, Gabor
    Tardos, Gabor
    Vrecica, Sinisa T.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (02) : 889 - 908
  • [22] Local antimagic chromatic number of certain classes of trees
    Sarath, Vs.
    Prajeesh, A.V.
    2023 2nd International Conference on Electrical, Electronics, Information and Communication Technologies, ICEEICT 2023, 2023,
  • [23] On local antimagic chromatic number of lexicographic product graphs
    G.-C. Lau
    W. C. Shiu
    Acta Mathematica Hungarica, 2023, 169 : 158 - 170
  • [24] On the local antimagic total edge chromatic number of amalgamation of graphs
    Kurniawati, Elsa Yuli
    Agustin, Ika Hesti
    Dafik
    Alfarisi, Ridho
    Marsidi
    INTERNATIONAL CONFERENCE ON SCIENCE AND APPLIED SCIENCE (ICSAS) 2018, 2018, 2014
  • [25] On Local Antimagic Chromatic Number of Graphs with Cut-vertices
    Lau, Gee-Choon
    Shiu, Wai-Chee
    Ng, Ho-Kuen
    IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2024, 19 (01): : 1 - 17
  • [26] On join product and local antimagic chromatic number of regular graphs
    G. -C. Lau
    W. C. Shiu
    Acta Mathematica Hungarica, 2023, 169 : 108 - 133
  • [27] Local total anti-magic chromatic number of graphs
    Sandhiya, V.
    Nalliah, M.
    HELIYON, 2023, 9 (07)
  • [28] On join product and local antimagic chromatic number of regular graphs
    Lau, G. -C.
    Shiu, W. C.
    ACTA MATHEMATICA HUNGARICA, 2023, 169 (01) : 108 - 133
  • [29] Relations between the Local Chromatic Number and Its Directed Version
    Simonyi, Gabor
    Tardos, Gabor
    Zsban, Ambrus
    JOURNAL OF GRAPH THEORY, 2015, 79 (04) : 318 - 330
  • [30] On the fractional chromatic number, the chromatic number, and graph products
    Klavzar, S
    Yeh, HG
    DISCRETE MATHEMATICS, 2002, 247 (1-3) : 235 - 242