Affirmative Solutions on Local Antimagic Chromatic Number

被引:18
|
作者
Lau, Gee-Choon [1 ]
Ng, Ho-Kuen [2 ]
Shiu, Wai-Chee [3 ,4 ]
机构
[1] Univ Teknol MARA, Fac Comp & Math Sci, Segamat Campus, Johor Baharu, Malaysia
[2] San Jose State Univ, Dept Math, San Jose, CA 95192 USA
[3] Chinese Univ Hong Kong, Dept Math, Hong Kong, Peoples R China
[4] Beijing Inst Technol, Coll Global Talents, Zhuhai, Peoples R China
关键词
Local antimagic labeling; Local antimagic chromatic number;
D O I
10.1007/s00373-020-02197-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An edge labeling of a connected graphG = (V,E) is said to be local antimagic if it is a bijectionf:E ->{1, horizontal ellipsis ,|E|} such that for any pair of adjacent verticesxandy,f+(x)not equal f+(y), where the induced vertex labelf+(x)= n-ary sumation f(e), witheranging over all the edges incident tox. The local antimagic chromatic number of G, denoted by chi(la)(G), is the minimum number of distinct induced vertex labels over all local antimagic labelings of G. In this paper, we give counterexamples to the lower bound of chi(la)(G proves O2) that was obtained in [Local antimagic vertex coloring of a graph, Graphs Combin. 33:275-285 (2017)]. A sharp lower bound of chi(la)(G proves On) and sufficient conditions for the given lower bound to be attained are obtained. Moreover, we settled Theorem 2.15 and solved Problem 3.3 in the affirmative. We also completely determined the local antimagic chromatic number of complete bipartite graphs.
引用
收藏
页码:1337 / 1354
页数:18
相关论文
共 50 条
  • [1] Affirmative Solutions on Local Antimagic Chromatic Number
    Gee-Choon Lau
    Ho-Kuen Ng
    Wai-Chee Shiu
    Graphs and Combinatorics, 2020, 36 : 1337 - 1354
  • [2] On number of pendants in local antimagic chromatic number
    Lau, Gee-Choon
    Shiu, Wai-Chee
    Ng, Ho-Kuen
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2022, 25 (08): : 2673 - 2682
  • [3] On modulo local antimagic chromatic number of graphs
    Li, Jianxi
    Lau, Gee-Choon
    Shiu, Wai-Chee
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2022, 25 (08): : 2519 - 2533
  • [4] Local Antimagic Chromatic Number for Copies of Graphs
    Baca, Martin
    Semanicova-Fenovcikova, Andrea
    Wang, Tao-Ming
    MATHEMATICS, 2021, 9 (11)
  • [5] Local antimagic chromatic number of trees - I
    Premalatha, K.
    Arumugam, S.
    Lee, Yi-Chun
    Wang, Tao-Ming
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2022, 25 (06): : 1591 - 1602
  • [6] On local antimagic chromatic number of spider graphs
    Lau, Gee-Choon
    Shiu, Wai-Chee
    Soo, Chee-Xian
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2023, 26 (02): : 303 - 339
  • [7] Complete solutions on local antimagic chromatic number of three families of disconnected graphs
    Chan, Tsz Lung
    Lau, Gee-Choon
    Shiu, Wai Chee
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2024,
  • [8] On the local antimagic chromatic number of the lexicographic product of graphs
    Lau, Gee-Choon
    Shiu, Wai Chee
    Kanthavadivel, Premalatha
    Zhang, Ruixue
    Movirichettiar, Nalliah
    DISCRETE MATHEMATICS LETTERS, 2023, 11 : 76 - 83
  • [9] ON LOCAL ANTIMAGIC CHROMATIC NUMBER OF LEXICOGRAPHIC PRODUCT GRAPHS
    Lau, G. -C.
    Shiu, W. C.
    ACTA MATHEMATICA HUNGARICA, 2023, 169 (1) : 158 - 170
  • [10] On local antimagic chromatic number of lexicographic product graphs
    Faculty of Computer & Mathematical Sciences, Universiti Teknologi MARA, Johor Branch, Segamat Campus, 85000, Malaysia
    不详
    arXiv,