Affirmative Solutions on Local Antimagic Chromatic Number

被引:18
|
作者
Lau, Gee-Choon [1 ]
Ng, Ho-Kuen [2 ]
Shiu, Wai-Chee [3 ,4 ]
机构
[1] Univ Teknol MARA, Fac Comp & Math Sci, Segamat Campus, Johor Baharu, Malaysia
[2] San Jose State Univ, Dept Math, San Jose, CA 95192 USA
[3] Chinese Univ Hong Kong, Dept Math, Hong Kong, Peoples R China
[4] Beijing Inst Technol, Coll Global Talents, Zhuhai, Peoples R China
关键词
Local antimagic labeling; Local antimagic chromatic number;
D O I
10.1007/s00373-020-02197-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An edge labeling of a connected graphG = (V,E) is said to be local antimagic if it is a bijectionf:E ->{1, horizontal ellipsis ,|E|} such that for any pair of adjacent verticesxandy,f+(x)not equal f+(y), where the induced vertex labelf+(x)= n-ary sumation f(e), witheranging over all the edges incident tox. The local antimagic chromatic number of G, denoted by chi(la)(G), is the minimum number of distinct induced vertex labels over all local antimagic labelings of G. In this paper, we give counterexamples to the lower bound of chi(la)(G proves O2) that was obtained in [Local antimagic vertex coloring of a graph, Graphs Combin. 33:275-285 (2017)]. A sharp lower bound of chi(la)(G proves On) and sufficient conditions for the given lower bound to be attained are obtained. Moreover, we settled Theorem 2.15 and solved Problem 3.3 in the affirmative. We also completely determined the local antimagic chromatic number of complete bipartite graphs.
引用
收藏
页码:1337 / 1354
页数:18
相关论文
共 50 条
  • [41] Local distance antimagic cromatic number of join product of graphs with cycles or paths
    Shiu, Wai Chee
    Lau, Gee-Choon
    Nalliah, M.
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2024, 53 (03): : 788 - 802
  • [42] The Adaptable Chromatic Number and the Chromatic Number
    Molloy, Michael
    JOURNAL OF GRAPH THEORY, 2017, 84 (01) : 53 - 56
  • [43] On the chromatic number local irregularity of related wheel graph
    Kristiana, Arika Indah
    Utoyo, Moh Imam
    Dafik
    Agustin, Ika Hesti
    Alfarisi, Ridho
    Waluyo, Eko
    2ND INTERNATIONAL CONFERENCE OF COMBINATORICS, GRAPH THEORY, AND NETWORK TOPOLOGY, 2019,
  • [44] Packing chromatic number under local changes in a graph
    Bresar, Bostjan
    Klavzar, Sandi
    Rall, Douglas F.
    Washe, Kirsti
    DISCRETE MATHEMATICS, 2017, 340 (05) : 1110 - 1115
  • [45] LOCAL CHROMATIC NUMBER AND DISTINGUISHING THE STRENGTH OF TOPOLOGICAL OBSTRUCTIONS
    Simonyi, Gabor
    Tardos, Gabor
    Vrecica, Sinisa T.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (02) : 889 - 908
  • [46] Local antimagic labeling of graphs
    Yu, Xiaowei
    Hu, Jie
    Yang, Donglei
    Wu, Jianliang
    Wang, Guanghui
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 322 : 30 - 39
  • [47] Local antimagic orientation of graphs
    Chang, Yulin
    Jing, Fei
    Wang, Guanghui
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2020, 39 (04) : 1129 - 1152
  • [48] Local antimagic orientation of graphs
    Yulin Chang
    Fei Jing
    Guanghui Wang
    Journal of Combinatorial Optimization, 2020, 39 : 1129 - 1152
  • [49] Proof of a local antimagic conjecture
    Haslegrave, John
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2018, 20 (01):
  • [50] Proof of a local antimagic conjecture
    Haslegrave, John, 2018, Discrete Mathematics and Theoretical Computer Science (20):