Affirmative Solutions on Local Antimagic Chromatic Number

被引:18
|
作者
Lau, Gee-Choon [1 ]
Ng, Ho-Kuen [2 ]
Shiu, Wai-Chee [3 ,4 ]
机构
[1] Univ Teknol MARA, Fac Comp & Math Sci, Segamat Campus, Johor Baharu, Malaysia
[2] San Jose State Univ, Dept Math, San Jose, CA 95192 USA
[3] Chinese Univ Hong Kong, Dept Math, Hong Kong, Peoples R China
[4] Beijing Inst Technol, Coll Global Talents, Zhuhai, Peoples R China
关键词
Local antimagic labeling; Local antimagic chromatic number;
D O I
10.1007/s00373-020-02197-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An edge labeling of a connected graphG = (V,E) is said to be local antimagic if it is a bijectionf:E ->{1, horizontal ellipsis ,|E|} such that for any pair of adjacent verticesxandy,f+(x)not equal f+(y), where the induced vertex labelf+(x)= n-ary sumation f(e), witheranging over all the edges incident tox. The local antimagic chromatic number of G, denoted by chi(la)(G), is the minimum number of distinct induced vertex labels over all local antimagic labelings of G. In this paper, we give counterexamples to the lower bound of chi(la)(G proves O2) that was obtained in [Local antimagic vertex coloring of a graph, Graphs Combin. 33:275-285 (2017)]. A sharp lower bound of chi(la)(G proves On) and sufficient conditions for the given lower bound to be attained are obtained. Moreover, we settled Theorem 2.15 and solved Problem 3.3 in the affirmative. We also completely determined the local antimagic chromatic number of complete bipartite graphs.
引用
收藏
页码:1337 / 1354
页数:18
相关论文
共 50 条
  • [11] On local antimagic chromatic number of various join graphs
    Premalatha, K.
    Lau, G. C.
    Arumugam, S.
    Shiu, W. C.
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2023, 8 (04) : 693 - 714
  • [12] On Bridge Graphs with Local Antimagic Chromatic Number 3
    Shiu, Wai-Chee
    Lau, Gee-Choon
    Zhang, Ruixue
    MATHEMATICS, 2025, 13 (01)
  • [13] On local antimagic chromatic number of lexicographic product graphs
    G.-C. Lau
    W. C. Shiu
    Acta Mathematica Hungarica, 2023, 169 : 158 - 170
  • [14] Local antimagic chromatic number of certain classes of trees
    Sarath, Vs.
    Prajeesh, A.V.
    2023 2nd International Conference on Electrical, Electronics, Information and Communication Technologies, ICEEICT 2023, 2023,
  • [15] On the local antimagic total edge chromatic number of amalgamation of graphs
    Kurniawati, Elsa Yuli
    Agustin, Ika Hesti
    Dafik
    Alfarisi, Ridho
    Marsidi
    INTERNATIONAL CONFERENCE ON SCIENCE AND APPLIED SCIENCE (ICSAS) 2018, 2018, 2014
  • [16] On Local Antimagic Chromatic Number of Graphs with Cut-vertices
    Lau, Gee-Choon
    Shiu, Wai-Chee
    Ng, Ho-Kuen
    IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2024, 19 (01): : 1 - 17
  • [17] On join product and local antimagic chromatic number of regular graphs
    G. -C. Lau
    W. C. Shiu
    Acta Mathematica Hungarica, 2023, 169 : 108 - 133
  • [18] On join product and local antimagic chromatic number of regular graphs
    Lau, G. -C.
    Shiu, W. C.
    ACTA MATHEMATICA HUNGARICA, 2023, 169 (01) : 108 - 133
  • [19] Local Total Antimagic Chromatic Number for the Disjoint Union of Star Graphs
    Sandhiya, Venkatesan
    Nalliah, Moviri Chettiar
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2024, 17 (04): : 2828 - 2842
  • [20] COMPLETE CHARACTERIZATION OF BRIDGE GRAPHS WITH LOCAL ANTIMAGIC CHROMATIC NUMBER 2
    Lau, Gee-Choon
    Shiu, Wai Chee
    Nalliah, M.
    Zhang, Ruixue
    Premalatha, K.
    VESTNIK UDMURTSKOGO UNIVERSITETA-MATEMATIKA MEKHANIKA KOMPYUTERNYE NAUKI, 2024, 34 (03): : 375 - 396