On the local antimagic chromatic number of the lexicographic product of graphs

被引:0
|
作者
Lau, Gee-Choon [1 ]
Shiu, Wai Chee [2 ]
Kanthavadivel, Premalatha [3 ]
Zhang, Ruixue [4 ]
Movirichettiar, Nalliah [5 ]
机构
[1] Univ Teknol MARA, Coll Comp Informat & Media, Johor Branch, Segamat Campus, Johor Baharu, Malaysia
[2] Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
[3] Kalasalingam Acad Res & Educ, Natl Ctr Adv Res Discrete Math, Krishnankoil, India
[4] Qingdao Univ, Sch Math & Stat, Qingdao, Peoples R China
[5] Vellore Inst Technol, Sch Adv Sci, Dept Math, Vellore, Tamil Nadu, India
基金
美国国家科学基金会;
关键词
lexicographic product; regular; local antimagic chromatic number;
D O I
10.47443/dml.2022.149
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G = (V, E) be a connected simple graph. A bijection f : E -> {1, 2, . . . , |E|} is said to be a local antimagic labeling of G if f(+)(u) not equal f(+)(v) holds for any two adjacent vertices u and v of G, where E(u) is the set of edges incident to u and f(+)(u) = Sigma(eE(u)) f(e). A graph G is called local antimagic if G admits at least one local antimagic labeling. The local antimagic chromatic number, denoted chi(la)(G), is the minimum number of induced colors taken over local antimagic labelings of G. Let G and H be two disjoint graphs. The graph G[H] is obtained by the lexicographic product of G and H. In this paper, we obtain sufficient conditions for chi(la)(G[H]) <= chi(la)(G)chi(la)(H). Consequently, we give examples of G and H such that chi(la)(G[H]) = chi(G)chi(H), where chi(G) is the chromatic number of G. We conjecture that (i) there are infinitely many graphs G and H such that chi(la)(G[H]) = chi(la)(G)chi(la)(H) = chi(G)chi(H), and (ii) for k >= 1, chi(la)(G[H]) = chi(G)chi(H) if and only if chi(G)chi(H) = 2 chi(H) + inverted right perpendicular chi(H)/k inverted left perpendicular, where 2k + 1 is the length of a shortest odd cycle in G.
引用
收藏
页码:76 / 83
页数:8
相关论文
共 50 条
  • [1] ON LOCAL ANTIMAGIC CHROMATIC NUMBER OF LEXICOGRAPHIC PRODUCT GRAPHS
    Lau, G. -C.
    Shiu, W. C.
    ACTA MATHEMATICA HUNGARICA, 2023, 169 (1) : 158 - 170
  • [2] On local antimagic chromatic number of lexicographic product graphs
    Faculty of Computer & Mathematical Sciences, Universiti Teknologi MARA, Johor Branch, Segamat Campus, 85000, Malaysia
    不详
    arXiv,
  • [3] On local antimagic chromatic number of lexicographic product graphs
    G.-C. Lau
    W. C. Shiu
    Acta Mathematica Hungarica, 2023, 169 : 158 - 170
  • [4] On join product and local antimagic chromatic number of regular graphs
    G. -C. Lau
    W. C. Shiu
    Acta Mathematica Hungarica, 2023, 169 : 108 - 133
  • [5] On join product and local antimagic chromatic number of regular graphs
    Lau, G. -C.
    Shiu, W. C.
    ACTA MATHEMATICA HUNGARICA, 2023, 169 (01) : 108 - 133
  • [6] LOCAL ANTIMAGIC CHROMATIC NUMBER FOR THE CORONA PRODUCT OF WHEEL AND NULL GRAPHS
    Shankar, R.
    Nalliah, M. Ch
    VESTNIK UDMURTSKOGO UNIVERSITETA-MATEMATIKA MEKHANIKA KOMPYUTERNYE NAUKI, 2022, 32 (03): : 463 - 485
  • [7] On modulo local antimagic chromatic number of graphs
    Li, Jianxi
    Lau, Gee-Choon
    Shiu, Wai-Chee
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2022, 25 (08): : 2519 - 2533
  • [8] Local Antimagic Chromatic Number for Copies of Graphs
    Baca, Martin
    Semanicova-Fenovcikova, Andrea
    Wang, Tao-Ming
    MATHEMATICS, 2021, 9 (11)
  • [9] On local antimagic chromatic number of spider graphs
    Lau, Gee-Choon
    Shiu, Wai-Chee
    Soo, Chee-Xian
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2023, 26 (02): : 303 - 339
  • [10] Game chromatic number of lexicographic product graphs
    Alagammai, R.
    Vijayalakshmi, V.
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2015, 12 (2-3) : 216 - 220