On the local antimagic chromatic number of the lexicographic product of graphs

被引:0
|
作者
Lau, Gee-Choon [1 ]
Shiu, Wai Chee [2 ]
Kanthavadivel, Premalatha [3 ]
Zhang, Ruixue [4 ]
Movirichettiar, Nalliah [5 ]
机构
[1] Univ Teknol MARA, Coll Comp Informat & Media, Johor Branch, Segamat Campus, Johor Baharu, Malaysia
[2] Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
[3] Kalasalingam Acad Res & Educ, Natl Ctr Adv Res Discrete Math, Krishnankoil, India
[4] Qingdao Univ, Sch Math & Stat, Qingdao, Peoples R China
[5] Vellore Inst Technol, Sch Adv Sci, Dept Math, Vellore, Tamil Nadu, India
基金
美国国家科学基金会;
关键词
lexicographic product; regular; local antimagic chromatic number;
D O I
10.47443/dml.2022.149
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G = (V, E) be a connected simple graph. A bijection f : E -> {1, 2, . . . , |E|} is said to be a local antimagic labeling of G if f(+)(u) not equal f(+)(v) holds for any two adjacent vertices u and v of G, where E(u) is the set of edges incident to u and f(+)(u) = Sigma(eE(u)) f(e). A graph G is called local antimagic if G admits at least one local antimagic labeling. The local antimagic chromatic number, denoted chi(la)(G), is the minimum number of induced colors taken over local antimagic labelings of G. Let G and H be two disjoint graphs. The graph G[H] is obtained by the lexicographic product of G and H. In this paper, we obtain sufficient conditions for chi(la)(G[H]) <= chi(la)(G)chi(la)(H). Consequently, we give examples of G and H such that chi(la)(G[H]) = chi(G)chi(H), where chi(G) is the chromatic number of G. We conjecture that (i) there are infinitely many graphs G and H such that chi(la)(G[H]) = chi(la)(G)chi(la)(H) = chi(G)chi(H), and (ii) for k >= 1, chi(la)(G[H]) = chi(G)chi(H) if and only if chi(G)chi(H) = 2 chi(H) + inverted right perpendicular chi(H)/k inverted left perpendicular, where 2k + 1 is the length of a shortest odd cycle in G.
引用
收藏
页码:76 / 83
页数:8
相关论文
共 50 条
  • [11] On the fractional chromatic number and the lexicographic product of graphs
    Klavzar, S
    DISCRETE MATHEMATICS, 1998, 185 (1-3) : 259 - 263
  • [12] On local antimagic chromatic number of various join graphs
    Premalatha, K.
    Lau, G. C.
    Arumugam, S.
    Shiu, W. C.
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2023, 8 (04) : 693 - 714
  • [13] On Bridge Graphs with Local Antimagic Chromatic Number 3
    Shiu, Wai-Chee
    Lau, Gee-Choon
    Zhang, Ruixue
    MATHEMATICS, 2025, 13 (01)
  • [14] ON THE CHROMATIC NUMBER OF THE LEXICOGRAPHIC PRODUCT AND THE CARTESIAN SUM OF GRAPHS
    CIZEK, N
    KLAVZAR, S
    DISCRETE MATHEMATICS, 1994, 134 (1-3) : 17 - 24
  • [15] IMPROVED BOUNDS FOR THE CHROMATIC NUMBER OF THE LEXICOGRAPHIC PRODUCT OF GRAPHS
    KASCHEK, R
    KLAVZAR, S
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1994, 25 (12): : 1267 - 1274
  • [16] On the local antimagic total edge chromatic number of amalgamation of graphs
    Kurniawati, Elsa Yuli
    Agustin, Ika Hesti
    Dafik
    Alfarisi, Ridho
    Marsidi
    INTERNATIONAL CONFERENCE ON SCIENCE AND APPLIED SCIENCE (ICSAS) 2018, 2018, 2014
  • [17] On Local Antimagic Chromatic Number of Graphs with Cut-vertices
    Lau, Gee-Choon
    Shiu, Wai-Chee
    Ng, Ho-Kuen
    IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2024, 19 (01): : 1 - 17
  • [18] Lexicographic product graphs Pm[Pn] are antimagic
    Ma, Wenhui
    Dong, Guanghua
    Lu, Yingyu
    Wang, Ning
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2018, 15 (03) : 271 - 283
  • [19] Total Chromatic Number for Certain Classes of Lexicographic Product Graphs
    Sandhiya, T. P.
    Geetha, J.
    Somasundaram, K.
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2024, 9 (02) : 233 - 240
  • [20] Local Total Antimagic Chromatic Number for the Disjoint Union of Star Graphs
    Sandhiya, Venkatesan
    Nalliah, Moviri Chettiar
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2024, 17 (04): : 2828 - 2842