On the local antimagic chromatic number of the lexicographic product of graphs

被引:0
|
作者
Lau, Gee-Choon [1 ]
Shiu, Wai Chee [2 ]
Kanthavadivel, Premalatha [3 ]
Zhang, Ruixue [4 ]
Movirichettiar, Nalliah [5 ]
机构
[1] Univ Teknol MARA, Coll Comp Informat & Media, Johor Branch, Segamat Campus, Johor Baharu, Malaysia
[2] Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
[3] Kalasalingam Acad Res & Educ, Natl Ctr Adv Res Discrete Math, Krishnankoil, India
[4] Qingdao Univ, Sch Math & Stat, Qingdao, Peoples R China
[5] Vellore Inst Technol, Sch Adv Sci, Dept Math, Vellore, Tamil Nadu, India
基金
美国国家科学基金会;
关键词
lexicographic product; regular; local antimagic chromatic number;
D O I
10.47443/dml.2022.149
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G = (V, E) be a connected simple graph. A bijection f : E -> {1, 2, . . . , |E|} is said to be a local antimagic labeling of G if f(+)(u) not equal f(+)(v) holds for any two adjacent vertices u and v of G, where E(u) is the set of edges incident to u and f(+)(u) = Sigma(eE(u)) f(e). A graph G is called local antimagic if G admits at least one local antimagic labeling. The local antimagic chromatic number, denoted chi(la)(G), is the minimum number of induced colors taken over local antimagic labelings of G. Let G and H be two disjoint graphs. The graph G[H] is obtained by the lexicographic product of G and H. In this paper, we obtain sufficient conditions for chi(la)(G[H]) <= chi(la)(G)chi(la)(H). Consequently, we give examples of G and H such that chi(la)(G[H]) = chi(G)chi(H), where chi(G) is the chromatic number of G. We conjecture that (i) there are infinitely many graphs G and H such that chi(la)(G[H]) = chi(la)(G)chi(la)(H) = chi(G)chi(H), and (ii) for k >= 1, chi(la)(G[H]) = chi(G)chi(H) if and only if chi(G)chi(H) = 2 chi(H) + inverted right perpendicular chi(H)/k inverted left perpendicular, where 2k + 1 is the length of a shortest odd cycle in G.
引用
收藏
页码:76 / 83
页数:8
相关论文
共 50 条
  • [41] THE BASIS NUMBER OF THE LEXICOGRAPHIC PRODUCT OF GRAPHS
    ALI, AA
    MAROUGI, GT
    ARS COMBINATORIA, 1993, 36 : 271 - 282
  • [42] ON THE CHROMATIC NUMBER OF THE PRODUCT OF GRAPHS
    DUFFUS, D
    SANDS, B
    WOODROW, RE
    JOURNAL OF GRAPH THEORY, 1985, 9 (04) : 487 - 495
  • [43] A NOTE ON THE THUE CHROMATIC NUMBER OF LEXICOGRAPHIC PRODUCTS OF GRAPHS
    Peterin, Iztok
    Schreyer, Jens
    Skrabul'akova, Erika Feckova
    Taranenko, Andrej
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2018, 38 (03) : 635 - 643
  • [44] Local antimagic chromatic number of certain classes of trees
    Sarath, Vs.
    Prajeesh, A.V.
    2023 2nd International Conference on Electrical, Electronics, Information and Communication Technologies, ICEEICT 2023, 2023,
  • [45] The fractional chromatic number, the Hall ratio, and the lexicographic product
    Johnson, P. D., Jr.
    DISCRETE MATHEMATICS, 2009, 309 (14) : 4746 - 4749
  • [46] On the super domination number of lexicographic product graphs
    Dettlaff, M.
    Lemanska, M.
    Rodriguez-Velazquez, J. A.
    Zuazua, R.
    DISCRETE APPLIED MATHEMATICS, 2019, 263 (118-129) : 118 - 129
  • [47] Toll number of the Cartesian and the lexicographic product of graphs
    Gologranc, Tanja
    Repolusk, Polona
    DISCRETE MATHEMATICS, 2017, 340 (10) : 2488 - 2498
  • [48] On (a, d)-edge local antimagic coloring number of graphs
    Sundaramoorthy, Rajkumar
    Moviri Chettiar, Nalliah
    TURKISH JOURNAL OF MATHEMATICS, 2022, 46 (05) : 1994 - 2002
  • [49] The Local Metric Dimension of the Lexicographic Product of Graphs
    Barragan-Ramirez, Gabriel A.
    Estrada-Moreno, Alejandro
    Ramirez-Cruz, Yunior
    Rodriguez-Velazquez, Juan A.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2019, 42 (05) : 2481 - 2496
  • [50] The Local Metric Dimension of the Lexicographic Product of Graphs
    Gabriel A. Barragán-Ramírez
    Alejandro Estrada-Moreno
    Yunior Ramírez-Cruz
    Juan A. Rodríguez-Velázquez
    Bulletin of the Malaysian Mathematical Sciences Society, 2019, 42 : 2481 - 2496