On the local antimagic chromatic number of the lexicographic product of graphs

被引:0
|
作者
Lau, Gee-Choon [1 ]
Shiu, Wai Chee [2 ]
Kanthavadivel, Premalatha [3 ]
Zhang, Ruixue [4 ]
Movirichettiar, Nalliah [5 ]
机构
[1] Univ Teknol MARA, Coll Comp Informat & Media, Johor Branch, Segamat Campus, Johor Baharu, Malaysia
[2] Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
[3] Kalasalingam Acad Res & Educ, Natl Ctr Adv Res Discrete Math, Krishnankoil, India
[4] Qingdao Univ, Sch Math & Stat, Qingdao, Peoples R China
[5] Vellore Inst Technol, Sch Adv Sci, Dept Math, Vellore, Tamil Nadu, India
基金
美国国家科学基金会;
关键词
lexicographic product; regular; local antimagic chromatic number;
D O I
10.47443/dml.2022.149
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G = (V, E) be a connected simple graph. A bijection f : E -> {1, 2, . . . , |E|} is said to be a local antimagic labeling of G if f(+)(u) not equal f(+)(v) holds for any two adjacent vertices u and v of G, where E(u) is the set of edges incident to u and f(+)(u) = Sigma(eE(u)) f(e). A graph G is called local antimagic if G admits at least one local antimagic labeling. The local antimagic chromatic number, denoted chi(la)(G), is the minimum number of induced colors taken over local antimagic labelings of G. Let G and H be two disjoint graphs. The graph G[H] is obtained by the lexicographic product of G and H. In this paper, we obtain sufficient conditions for chi(la)(G[H]) <= chi(la)(G)chi(la)(H). Consequently, we give examples of G and H such that chi(la)(G[H]) = chi(G)chi(H), where chi(G) is the chromatic number of G. We conjecture that (i) there are infinitely many graphs G and H such that chi(la)(G[H]) = chi(la)(G)chi(la)(H) = chi(G)chi(H), and (ii) for k >= 1, chi(la)(G[H]) = chi(G)chi(H) if and only if chi(G)chi(H) = 2 chi(H) + inverted right perpendicular chi(H)/k inverted left perpendicular, where 2k + 1 is the length of a shortest odd cycle in G.
引用
收藏
页码:76 / 83
页数:8
相关论文
共 50 条
  • [21] COMPLETE CHARACTERIZATION OF BRIDGE GRAPHS WITH LOCAL ANTIMAGIC CHROMATIC NUMBER 2
    Lau, Gee-Choon
    Shiu, Wai Chee
    Nalliah, M.
    Zhang, Ruixue
    Premalatha, K.
    VESTNIK UDMURTSKOGO UNIVERSITETA-MATEMATIKA MEKHANIKA KOMPYUTERNYE NAUKI, 2024, 34 (03): : 375 - 396
  • [22] On the local super antimagic total face chromatic number of plane graphs
    Anggraini, D. D.
    Dafik
    Maryati, T. K.
    Augustin, I. H.
    Kurniawati, E. Y.
    Prihandini, R. M.
    FIRST INTERNATIONAL CONFERENCE ON ENVIRONMENTAL GEOGRAPHY AND GEOGRAPHY EDUCATION (ICEGE), 2019, 243
  • [23] ON LOCAL ANTIMAGIC CHROMATIC NUMBER OF CYCLE-RELATED JOIN GRAPHS
    Lau, Gee-Choon
    Shiu, Wai-Chee
    Ng, Ho-Kuen
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2021, 41 (01) : 133 - 152
  • [24] Chromatic number of super vertex local antimagic total labelings of graphs
    Hadiputra, Fawwaz F.
    Sugeng, Kiki A.
    Silaban, Denny R.
    Maryati, Tita K.
    Froncek, Dalibor
    ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2021, 9 (02) : 485 - 498
  • [25] Local distance antimagic chromatic number for the union of complete bipartite graphs
    Priyadharshini, V.
    Nalliah, M.
    TAMKANG JOURNAL OF MATHEMATICS, 2023, 54 (04): : 281 - 291
  • [26] On number of pendants in local antimagic chromatic number
    Lau, Gee-Choon
    Shiu, Wai-Chee
    Ng, Ho-Kuen
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2022, 25 (08): : 2673 - 2682
  • [27] On local antimagic chromatic number of cycle-related join graphs II
    Lau, Gee-Choon
    Premalatha, K.
    Arumugam, S.
    Shiu, Wai Chee
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2024, 16 (03)
  • [28] Complete solutions on local antimagic chromatic number of three families of disconnected graphs
    Chan, Tsz Lung
    Lau, Gee-Choon
    Shiu, Wai Chee
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2024,
  • [29] Local Distance Antimagic Chromatic Number for the Union of Star and Double Star Graphs
    V. Priyadharshini
    M. Nalliah
    Ukrainian Mathematical Journal, 2023, 75 : 765 - 781
  • [30] Local Distance Antimagic Chromatic Number for the Union of Star and Double Star Graphs
    Priyadharshini, V.
    Nalliah, M.
    UKRAINIAN MATHEMATICAL JOURNAL, 2023, 75 (05) : 765 - 781