On Description of Leibniz Algebras Corresponding to sl 2

被引:26
|
作者
Omirov, B. A. [1 ]
Rakhimov, I. S. [2 ,3 ]
Turdibaev, R. M. [4 ]
机构
[1] Uzbek Acad Sci, Inst Math & Informat Technol, Tashkent 100125, Uzbekistan
[2] Univ Putra Malaysia, Inst Math Res INSPEM, FS, Serdang 43400, Selangor Darul, Malaysia
[3] Univ Putra Malaysia, FS, Dept Math, Serdang 43400, Selangor Darul, Malaysia
[4] Natl Univ Uzbekistan, Dept Math, Tashkent 100174, Uzbekistan
关键词
Leibniz algebra; Lie algebra; Irreducible module; Simple Leibniz algebra; INVARIANTS; SUBCLASS;
D O I
10.1007/s10468-012-9367-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we describe finite-dimensional complex Leibniz algebras whose quotient algebra with respect to the ideal I generated by squares is isomorphic to the simple Lie algebra sl (2). It is shown that the number of isomorphism classes such of Leibniz algebras coincides with the number of partitions of dim I.
引用
收藏
页码:1507 / 1519
页数:13
相关论文
共 50 条
  • [21] Leibniz algebras constructed by Witt algebras
    Camacho, L. M.
    Omirov, B. A.
    Kurbanbaev, T. K.
    LINEAR & MULTILINEAR ALGEBRA, 2019, 67 (10): : 2048 - 2064
  • [22] Representations of Leibniz Algebras
    A. Fialowski
    É. Zs. Mihálka
    Algebras and Representation Theory, 2015, 18 : 477 - 490
  • [23] Subinvariance in Leibniz algebras
    Misra, Kailash C.
    Stitzinger, Ernie
    Yu, Xingjian
    JOURNAL OF ALGEBRA, 2021, 567 : 128 - 138
  • [24] Thin Leibniz algebras
    B. A. Omirov
    Mathematical Notes, 2006, 80 : 244 - 253
  • [25] Leibniz algebras with derivations
    Apurba Das
    Journal of Homotopy and Related Structures, 2021, 16 : 245 - 274
  • [26] Thin Leibniz algebras
    Omirov, B. A.
    MATHEMATICAL NOTES, 2006, 80 (1-2) : 244 - 253
  • [27] On split Leibniz algebras
    Calderon Martin, Antonio J.
    Sanchez Delgado, Jose M.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (06) : 1651 - 1663
  • [28] On the toroidal Leibniz algebras
    Liu, Dong
    Lin, Lei
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2008, 24 (02) : 227 - 240
  • [29] On the anticommutativity in Leibniz algebras
    Kurdachenko, Leonid A.
    Semko, Nikolaj N.
    Subbotin, Igor Ya
    ALGEBRA & DISCRETE MATHEMATICS, 2018, 26 (01): : 97 - 109
  • [30] Cohomology of Leibniz Algebras
    Wagemann F.
    Jahresbericht der Deutschen Mathematiker-Vereinigung, 2023, 125 (4) : 239 - 264