On Description of Leibniz Algebras Corresponding to sl 2

被引:26
|
作者
Omirov, B. A. [1 ]
Rakhimov, I. S. [2 ,3 ]
Turdibaev, R. M. [4 ]
机构
[1] Uzbek Acad Sci, Inst Math & Informat Technol, Tashkent 100125, Uzbekistan
[2] Univ Putra Malaysia, Inst Math Res INSPEM, FS, Serdang 43400, Selangor Darul, Malaysia
[3] Univ Putra Malaysia, FS, Dept Math, Serdang 43400, Selangor Darul, Malaysia
[4] Natl Univ Uzbekistan, Dept Math, Tashkent 100174, Uzbekistan
关键词
Leibniz algebra; Lie algebra; Irreducible module; Simple Leibniz algebra; INVARIANTS; SUBCLASS;
D O I
10.1007/s10468-012-9367-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we describe finite-dimensional complex Leibniz algebras whose quotient algebra with respect to the ideal I generated by squares is isomorphic to the simple Lie algebra sl (2). It is shown that the number of isomorphism classes such of Leibniz algebras coincides with the number of partitions of dim I.
引用
收藏
页码:1507 / 1519
页数:13
相关论文
共 50 条
  • [41] Complete Leibniz algebras
    Boyle, Kristen
    Misra, Kailash C.
    Stitzinger, Ernest
    JOURNAL OF ALGEBRA, 2020, 557 : 172 - 180
  • [42] Leibniz algebras with derivations
    Das, Apurba
    JOURNAL OF HOMOTOPY AND RELATED STRUCTURES, 2021, 16 (02) : 245 - 274
  • [43] TRIANGULABLE LEIBNIZ ALGEBRAS
    Burch, Tiffany
    Stitzinger, Ernie
    COMMUNICATIONS IN ALGEBRA, 2016, 44 (08) : 3622 - 3625
  • [44] On compatible Leibniz algebras
    Makhlouf, Abdenacer
    Saha, Ripan
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2025, 24 (04)
  • [45] On vertex Leibniz algebras
    Li, Haisheng
    Tan, Shaobin
    Wang, Qing
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2013, 217 (12) : 2356 - 2370
  • [46] On the capability of Leibniz algebras
    Khmaladze, Emzar
    Kurdiani, Revaz
    Ladra, Manuel
    GEORGIAN MATHEMATICAL JOURNAL, 2021, 28 (02) : 271 - 279
  • [47] Binary Leibniz Algebras
    Ismailov, N. A.
    Dzhumadil'daev, A. S.
    MATHEMATICAL NOTES, 2021, 110 (3-4) : 322 - 328
  • [48] On extensions of Leibniz algebras
    Rakhimov, I. S.
    Husain, Sh. K. Said
    Mohammed, M. A.
    1ST INTERNATIONAL CONFERENCE ON APPLIED & INDUSTRIAL MATHEMATICS AND STATISTICS 2017 (ICOAIMS 2017), 2017, 890
  • [49] On Leibniz superalgebras which even part is sl2
    Muratova, Kh A.
    Khudoyberdiyev, A. Kh
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2021, 20 (09)
  • [50] A ASTERISK-PRODUCT ON SL(2) AND THE CORRESPONDING NONSTANDARD QUANTUM-U(SL(2))
    OHN, C
    LETTERS IN MATHEMATICAL PHYSICS, 1992, 25 (02) : 85 - 88