On Description of Leibniz Algebras Corresponding to sl 2

被引:26
|
作者
Omirov, B. A. [1 ]
Rakhimov, I. S. [2 ,3 ]
Turdibaev, R. M. [4 ]
机构
[1] Uzbek Acad Sci, Inst Math & Informat Technol, Tashkent 100125, Uzbekistan
[2] Univ Putra Malaysia, Inst Math Res INSPEM, FS, Serdang 43400, Selangor Darul, Malaysia
[3] Univ Putra Malaysia, FS, Dept Math, Serdang 43400, Selangor Darul, Malaysia
[4] Natl Univ Uzbekistan, Dept Math, Tashkent 100174, Uzbekistan
关键词
Leibniz algebra; Lie algebra; Irreducible module; Simple Leibniz algebra; INVARIANTS; SUBCLASS;
D O I
10.1007/s10468-012-9367-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we describe finite-dimensional complex Leibniz algebras whose quotient algebra with respect to the ideal I generated by squares is isomorphic to the simple Lie algebra sl (2). It is shown that the number of isomorphism classes such of Leibniz algebras coincides with the number of partitions of dim I.
引用
收藏
页码:1507 / 1519
页数:13
相关论文
共 50 条
  • [1] On Description of Leibniz Algebras Corresponding to sl2
    B. A. Omirov
    I. S. Rakhimov
    R. M. Turdibaev
    Algebras and Representation Theory, 2013, 16 : 1507 - 1519
  • [2] Leibniz Algebras Associated to Extensions of sl2
    Camacho, L. M.
    Gomez-Vidal, S.
    Omirov, B. A.
    COMMUNICATIONS IN ALGEBRA, 2015, 43 (10) : 4403 - 4414
  • [3] On Leibniz Superalgebras with Even Part Corresponding to sl2
    Camacho, L. M.
    Navarro, R. M.
    ALGEBRAS AND REPRESENTATION THEORY, 2021, 24 (03) : 783 - 798
  • [4] Leibniz Algebras Whose Semisimple Part is Related to sl2
    Camacho, L. M.
    Gomez-Vidal, S.
    Omirov, B. A.
    Karimjanov, I. A.
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2017, 40 (02) : 599 - 615
  • [5] Description of some classes of Leibniz algebras
    Rakhimov, I. S.
    Rikhsiboev, I. M.
    Khudoyberdiyev, A. Kh
    Karimjanov, I. A.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 437 (09) : 2209 - 2227
  • [6] The Structure of Weak Hopf Algebras Corresponding to Uq(sl2)
    Cheng, Dongming
    Li, Fang
    COMMUNICATIONS IN ALGEBRA, 2009, 37 (03) : 729 - 742
  • [7] On the description of Leibniz algebras with nilindex n−3
    Jesús M. Cabezas
    Luisa M. Camacho
    José R. Gómez
    Bakhrom A. Omirov
    Acta Mathematica Hungarica, 2011, 133 : 203 - 220
  • [8] ON THE DESCRIPTION OF LEIBNIZ ALGEBRAS WITH NILINDEX n-3
    Cabezas, J. M.
    Camacho, L. M.
    Gomez, J. R.
    Omirov, B. A.
    ACTA MATHEMATICA HUNGARICA, 2011, 133 (03) : 203 - 220
  • [9] Description of solvable Leibniz algebras with four-dimensional nilradical
    Khudoyberdiyev, A. Kh.
    Shermatova, Z. Kh.
    TOPICS IN FUNCTIONAL ANALYSIS AND ALGEBRA, 2016, 672 : 217 - 224
  • [10] Some Leibniz bimodules of sl2
    Kurbanbaev, T.
    Turdibaev, R.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2020, 19 (04)