We prove that for every smooth compact Riemannian three-manifold (W) over bar with nonempty boundary, there exists a smooth properly embedded one-manifold Delta subset of W = Int((W) over bar), each of whose components is a simple closed curve and such that the domain D = W - Delta does not admit any properly immersed open surfaces with at least one annular end, bounded mean curvature, compact boundary (possibly empty) and a complete induced Riemannian metric.
机构:
SISSA Scuola Int Super Studi Avanzati, Via Bonomea 265, I-34136 Trieste, Italy
Ist Nazl Fis Nucleate, Sez Trieste, Trieste, Italy
Arnold Regge Ctr Algebra Geometry & Theoret Phys, Via P Giuria 1, I-10125 Turin, ItalySISSA Scuola Int Super Studi Avanzati, Via Bonomea 265, I-34136 Trieste, Italy
Bruzzo, U.
Lanza, V
论文数: 0引用数: 0
h-index: 0
机构:
IMECC UNICAMP, Dept Matemat, Rua Sergio Buarque de Holanda 651, BR-13083970 Campinas, SP, BrazilSISSA Scuola Int Super Studi Avanzati, Via Bonomea 265, I-34136 Trieste, Italy
Lanza, V
Lo Giudice, A.
论文数: 0引用数: 0
h-index: 0
机构:
Ripa Porta Ticinese 93, I-20021 Milan, ItalySISSA Scuola Int Super Studi Avanzati, Via Bonomea 265, I-34136 Trieste, Italy