CALABI-YAU DOMAINS IN THREE MANIFOLDS

被引:1
|
作者
Martin, Francisco [1 ]
Meeks, William H., III [2 ]
机构
[1] Univ Granada, Dept Geometry & Topol, E-18071 Granada, Spain
[2] Univ Massachusetts, Dept Math, Amherst, MA 01003 USA
基金
美国国家科学基金会;
关键词
PROPER MINIMAL-SURFACES; CONVEX-BODIES; BEHAVIOR; THEOREMS;
D O I
10.1353/ajm.2012.0037
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that for every smooth compact Riemannian three-manifold (W) over bar with nonempty boundary, there exists a smooth properly embedded one-manifold Delta subset of W = Int((W) over bar), each of whose components is a simple closed curve and such that the domain D = W - Delta does not admit any properly immersed open surfaces with at least one annular end, bounded mean curvature, compact boundary (possibly empty) and a complete induced Riemannian metric.
引用
收藏
页码:1329 / 1344
页数:16
相关论文
共 50 条
  • [31] CLASSIFICATION OF ASYMPTOTICALLY CONICAL CALABI-YAU MANIFOLDS
    Conlon, Ronan j.
    Hein, Hans-joachim
    DUKE MATHEMATICAL JOURNAL, 2024, 173 (01) : 947 - 1015
  • [32] Holomorphic Parabolic Geometries and Calabi-Yau Manifolds
    McKay, Benjamin
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2011, 7
  • [33] GENERALIZED SPACETIME DUALITY IN CALABI-YAU MANIFOLDS
    CVETIC, M
    MOLERA, JM
    OVRUT, BA
    PHYSICS LETTERS B, 1990, 248 (1-2) : 83 - 88
  • [34] Calabi-Yau manifolds with isolated conical singularities
    Hein, Hans-Joachim
    Sun, Song
    PUBLICATIONS MATHEMATIQUES DE L IHES, 2017, 126 (01): : 73 - 130
  • [35] D-Branes on Calabi-Yau manifolds
    Douglas, MR
    EUROPEAN CONGRESS OF MATHEMATICS, VOL II, 2001, 202 : 449 - 466
  • [36] Crystal Melting and Toric Calabi-Yau Manifolds
    Ooguri, Hirosi
    Yamazaki, Masahito
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 292 (01) : 179 - 199
  • [37] Non-Kahler Calabi-Yau Manifolds
    Tseng, Li-Sheng
    Yau, Shing-Tung
    STRING-MATH 2011, 2012, 85 : 241 - +
  • [38] Families of Calabi-Yau Manifolds and Canonical Singularities
    Tosatti, Valentino
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (20) : 10586 - 10594
  • [39] SEMISTABLE HIGGS BUNDLES ON CALABI-YAU MANIFOLDS
    Bruzzo, U.
    Lanza, V
    Lo Giudice, A.
    ASIAN JOURNAL OF MATHEMATICS, 2019, 23 (06) : 905 - 918
  • [40] Calabi-Yau manifolds and SU(3) structure
    Magdalena Larfors
    Andre Lukas
    Fabian Ruehle
    Journal of High Energy Physics, 2019