CALABI-YAU DOMAINS IN THREE MANIFOLDS

被引:1
|
作者
Martin, Francisco [1 ]
Meeks, William H., III [2 ]
机构
[1] Univ Granada, Dept Geometry & Topol, E-18071 Granada, Spain
[2] Univ Massachusetts, Dept Math, Amherst, MA 01003 USA
基金
美国国家科学基金会;
关键词
PROPER MINIMAL-SURFACES; CONVEX-BODIES; BEHAVIOR; THEOREMS;
D O I
10.1353/ajm.2012.0037
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that for every smooth compact Riemannian three-manifold (W) over bar with nonempty boundary, there exists a smooth properly embedded one-manifold Delta subset of W = Int((W) over bar), each of whose components is a simple closed curve and such that the domain D = W - Delta does not admit any properly immersed open surfaces with at least one annular end, bounded mean curvature, compact boundary (possibly empty) and a complete induced Riemannian metric.
引用
收藏
页码:1329 / 1344
页数:16
相关论文
共 50 条
  • [21] ADE QUANTUM CALABI-YAU MANIFOLDS
    LYNKER, M
    SCHIMMRIGK, R
    NUCLEAR PHYSICS B, 1990, 339 (01) : 121 - 157
  • [22] Calabi-Yau and fractional Calabi-Yau categories
    Kuznetsov, Alexander
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2019, 753 : 239 - 267
  • [23] Neutral Calabi-Yau structures on Kodaira manifolds
    Fino, A
    Pedersen, H
    Poon, YS
    Sorensen, MW
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 248 (02) : 255 - 268
  • [24] Some results on generalized Calabi-Yau manifolds
    De Bartolomeis, Paolo
    Tomassini, Adriano
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2006, 3 (5-6) : 1273 - 1292
  • [25] Fano manifolds of Calabi-Yau Hodge type
    Iliev, Atanas
    Manivel, Laurent
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2015, 219 (06) : 2225 - 2244
  • [26] Orientability for gauge theories on Calabi-Yau manifolds
    Cao, Yalong
    Leung, Naichung Conan
    ADVANCES IN MATHEMATICS, 2017, 314 : 48 - 70
  • [27] COLLAPSING OF ABELIAN FIBERED CALABI-YAU MANIFOLDS
    Gross, Mark
    Tosatti, Valentino
    Zhang, Yuguang
    DUKE MATHEMATICAL JOURNAL, 2013, 162 (03) : 517 - 551
  • [28] Crystal Melting and Toric Calabi-Yau Manifolds
    Hirosi Ooguri
    Masahito Yamazaki
    Communications in Mathematical Physics, 2009, 292 : 179 - 199
  • [29] Holomorphic Cartan geometries and Calabi-Yau manifolds
    Biswas, Indranil
    McKay, Benjamin
    JOURNAL OF GEOMETRY AND PHYSICS, 2010, 60 (04) : 661 - 663
  • [30] Frobenius map on local Calabi-Yau manifolds
    Shapiro, I.
    JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (02)