CALABI-YAU DOMAINS IN THREE MANIFOLDS

被引:1
|
作者
Martin, Francisco [1 ]
Meeks, William H., III [2 ]
机构
[1] Univ Granada, Dept Geometry & Topol, E-18071 Granada, Spain
[2] Univ Massachusetts, Dept Math, Amherst, MA 01003 USA
基金
美国国家科学基金会;
关键词
PROPER MINIMAL-SURFACES; CONVEX-BODIES; BEHAVIOR; THEOREMS;
D O I
10.1353/ajm.2012.0037
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that for every smooth compact Riemannian three-manifold (W) over bar with nonempty boundary, there exists a smooth properly embedded one-manifold Delta subset of W = Int((W) over bar), each of whose components is a simple closed curve and such that the domain D = W - Delta does not admit any properly immersed open surfaces with at least one annular end, bounded mean curvature, compact boundary (possibly empty) and a complete induced Riemannian metric.
引用
收藏
页码:1329 / 1344
页数:16
相关论文
共 50 条
  • [41] The arithmetic mirror symmetry and Calabi-Yau manifolds
    Gritsenko, VA
    Nikulin, VV
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 210 (01) : 1 - 11
  • [42] Mirror symmetry and elliptic Calabi-Yau manifolds
    Huang, Yu-Chien
    Taylor, Washington
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (04)
  • [43] D-branes on Calabi-Yau manifolds
    Aspinwall, PS
    PROGRESS IN STRING THEORY: TASI 2003 LECTURE NOTES, 2005, : 1 - 152
  • [44] Free quotients of favorable Calabi-Yau manifolds
    Gray, James
    Wang, Juntao
    JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (07)
  • [45] Brane superpotential and local Calabi-Yau manifolds
    Ricco, Antonio
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2008, 23 (14-15): : 2187 - 2189
  • [46] Free quotients of favorable Calabi-Yau manifolds
    James Gray
    Juntao Wang
    Journal of High Energy Physics, 2022
  • [47] Topological strings on Grassmannian Calabi-Yau manifolds
    Haghighat, Babak
    Klemm, Albrecht
    JOURNAL OF HIGH ENERGY PHYSICS, 2009, (01):
  • [48] On the connectedness of the moduli space of Calabi-Yau manifolds
    Avram, AC
    Candelas, P
    Jancic, D
    Mandelberg, M
    NUCLEAR PHYSICS B, 1996, 465 (03) : 458 - 472
  • [49] Calabi-Yau manifolds with isolated conical singularities
    Hans-Joachim Hein
    Song Sun
    Publications mathématiques de l'IHÉS, 2017, 126 : 73 - 130
  • [50] Neutral Calabi-Yau Structures on Kodaira Manifolds
    Anna Fino
    Henrik Pedersen
    Yat-Sun Poon
    Marianne Weye Sørensen
    Communications in Mathematical Physics, 2004, 248 : 255 - 268