CLASSIFICATION OF ASYMPTOTICALLY CONICAL CALABI-YAU MANIFOLDS

被引:1
|
作者
Conlon, Ronan j. [1 ]
Hein, Hans-joachim [2 ]
机构
[1] Univ Texas Dallas, Dept Math Sci, Richardson, TX 75080 USA
[2] Univ Munster, Math Inst, Munster, Germany
基金
美国国家科学基金会;
关键词
FLAT KAHLER-METRICS; SASAKI-EINSTEIN METRICS; CREPANT RESOLUTIONS; VERSAL DEFORMATION; SCALAR CURVATURE; C-N; EMBEDDINGS; CONSTRUCTION; UNIQUENESS; STABILITY;
D O I
10.1215/00127094-2023-0030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A Riemannian cone (C, gC) is by definition a warped product C = RC x L with boundary. We say that C is a Calabi-Yau cone if gC is a Ricci-flat K & auml;hler metric and if C admits a gC -parallel holomorphic volume form; this is equivalent to the cross-section (L, gL) being a Sasaki-Einstein manifold. In this paper, we give a complete classification of all smooth complete Calabi-Yau manifolds asymptotic to some given Calabi-Yau cone at a polynomial rate at infinity. As a special case, this includes a proof of Kronheimer's classification of ALE hyper-K & auml;hler 4-manifolds without twistor theory.
引用
收藏
页码:947 / 1015
页数:69
相关论文
共 50 条
  • [1] ASYMPTOTICALLY CONICAL CALABI-YAU MANIFOLDS, I
    Conlon, Ronan J.
    Hein, Hans-Joachim
    DUKE MATHEMATICAL JOURNAL, 2013, 162 (15) : 2855 - 2902
  • [2] Quasi-asymptotically conical Calabi-Yau manifolds
    Conlon, Ronan J.
    Degeratu, Anda
    Rochon, Frederic
    Sektnan, Lars
    GEOMETRY & TOPOLOGY, 2019, 23 (01) : 29 - 100
  • [3] ASYMPTOTICALLY CYLINDRICAL CALABI-YAU MANIFOLDS
    Haskins, Mark
    Hein, Hans-Joachim
    Nordstroem, Johannes
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2015, 101 (02) : 213 - 265
  • [4] On the degeneration of asymptotically conical Calabi-Yau metrics
    Collins, Tristan C.
    Guo, Bin
    Tong, Freid
    MATHEMATISCHE ANNALEN, 2022, 383 (3-4) : 867 - 919
  • [5] Calabi-Yau manifolds with isolated conical singularities
    Hein, Hans-Joachim
    Sun, Song
    PUBLICATIONS MATHEMATIQUES DE L IHES, 2017, 126 (01): : 73 - 130
  • [6] Calabi-Yau manifolds with isolated conical singularities
    Hans-Joachim Hein
    Song Sun
    Publications mathématiques de l'IHÉS, 2017, 126 : 73 - 130
  • [7] The Moduli Space of Asymptotically Cylindrical Calabi-Yau Manifolds
    Conlon, Ronan J.
    Mazzeo, Rafe
    Rochon, Frederic
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 338 (03) : 953 - 1009
  • [8] Asymptotically conical Calabi-Yau metrics on quasi-projective varieties
    Conlon, Ronan J.
    Hein, Hans-Joachim
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2015, 25 (02) : 517 - 552
  • [9] Singular Calabi-Yau manifolds and ADE classification of CFTs
    Naka, M
    Nozaki, M
    NUCLEAR PHYSICS B, 2001, 599 (1-2) : 334 - 360
  • [10] Calabi-Yau manifolds from pairs of non-compact Calabi-Yau manifolds
    Nam-Hoon Lee
    Journal of High Energy Physics, 2010