CLASSIFICATION OF ASYMPTOTICALLY CONICAL CALABI-YAU MANIFOLDS

被引:1
|
作者
Conlon, Ronan j. [1 ]
Hein, Hans-joachim [2 ]
机构
[1] Univ Texas Dallas, Dept Math Sci, Richardson, TX 75080 USA
[2] Univ Munster, Math Inst, Munster, Germany
基金
美国国家科学基金会;
关键词
FLAT KAHLER-METRICS; SASAKI-EINSTEIN METRICS; CREPANT RESOLUTIONS; VERSAL DEFORMATION; SCALAR CURVATURE; C-N; EMBEDDINGS; CONSTRUCTION; UNIQUENESS; STABILITY;
D O I
10.1215/00127094-2023-0030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A Riemannian cone (C, gC) is by definition a warped product C = RC x L with boundary. We say that C is a Calabi-Yau cone if gC is a Ricci-flat K & auml;hler metric and if C admits a gC -parallel holomorphic volume form; this is equivalent to the cross-section (L, gL) being a Sasaki-Einstein manifold. In this paper, we give a complete classification of all smooth complete Calabi-Yau manifolds asymptotic to some given Calabi-Yau cone at a polynomial rate at infinity. As a special case, this includes a proof of Kronheimer's classification of ALE hyper-K & auml;hler 4-manifolds without twistor theory.
引用
收藏
页码:947 / 1015
页数:69
相关论文
共 50 条
  • [21] A Calabi-Yau theorem for Vaisman manifolds
    Ornea, Liviu
    Verbitsky, Misha
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2024, 32 (10) : 2889 - 2900
  • [22] Entropy of an autoequivalence on Calabi-Yau manifolds
    Fan, Yu-Wei
    MATHEMATICAL RESEARCH LETTERS, 2018, 25 (02) : 509 - 519
  • [23] EXOTIC DEFORMATIONS OF CALABI-YAU MANIFOLDS
    De Bartolomeis, Paolo
    Tomassini, Adriano
    ANNALES DE L INSTITUT FOURIER, 2013, 63 (02) : 391 - 415
  • [24] On stability manifolds of Calabi-Yau surfaces
    Okada, So
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2006, 2006
  • [25] Calabi-Yau manifolds and sporadic groups
    Banlaki, Andreas
    Chowdhury, Abhishek
    Kidambi, Abhiram
    Schimpf, Maria
    Skarke, Harald
    Wrase, Timm
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (02):
  • [26] CALABI-YAU MANIFOLDS - MOTIVATIONS AND CONSTRUCTIONS
    HUBSCH, T
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 108 (02) : 291 - 318
  • [27] MODULI SPACE OF CALABI-YAU MANIFOLDS
    CANDELAS, P
    DELAOSSA, XC
    NUCLEAR PHYSICS B, 1991, 355 (02) : 455 - 481
  • [28] COMPLETE INTERSECTION CALABI-YAU MANIFOLDS
    CANDELAS, P
    DALE, AM
    LUTKEN, CA
    SCHIMMRIGK, R
    NUCLEAR PHYSICS B, 1988, 298 (03) : 493 - 525
  • [29] CALABI-YAU DOMAINS IN THREE MANIFOLDS
    Martin, Francisco
    Meeks, William H., III
    AMERICAN JOURNAL OF MATHEMATICS, 2012, 134 (05) : 1329 - 1344
  • [30] Deformations of elliptic Calabi-Yau manifolds
    Kollar, J.
    RECENT ADVANCES IN ALGEBRAIC GEOMETRY, 2015, 417 : 254 - 290