CLASSIFICATION OF ASYMPTOTICALLY CONICAL CALABI-YAU MANIFOLDS

被引:1
|
作者
Conlon, Ronan j. [1 ]
Hein, Hans-joachim [2 ]
机构
[1] Univ Texas Dallas, Dept Math Sci, Richardson, TX 75080 USA
[2] Univ Munster, Math Inst, Munster, Germany
基金
美国国家科学基金会;
关键词
FLAT KAHLER-METRICS; SASAKI-EINSTEIN METRICS; CREPANT RESOLUTIONS; VERSAL DEFORMATION; SCALAR CURVATURE; C-N; EMBEDDINGS; CONSTRUCTION; UNIQUENESS; STABILITY;
D O I
10.1215/00127094-2023-0030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A Riemannian cone (C, gC) is by definition a warped product C = RC x L with boundary. We say that C is a Calabi-Yau cone if gC is a Ricci-flat K & auml;hler metric and if C admits a gC -parallel holomorphic volume form; this is equivalent to the cross-section (L, gL) being a Sasaki-Einstein manifold. In this paper, we give a complete classification of all smooth complete Calabi-Yau manifolds asymptotic to some given Calabi-Yau cone at a polynomial rate at infinity. As a special case, this includes a proof of Kronheimer's classification of ALE hyper-K & auml;hler 4-manifolds without twistor theory.
引用
收藏
页码:947 / 1015
页数:69
相关论文
共 50 条
  • [31] Calabi-Yau Manifolds with Affine Structures
    Kokarev, V. N.
    MATHEMATICAL NOTES, 2018, 103 (3-4) : 669 - 671
  • [32] CALABI-YAU MANIFOLDS AND A CONJECTURE OF KOBAYASHI
    PETERNELL, T
    MATHEMATISCHE ZEITSCHRIFT, 1991, 207 (02) : 305 - 318
  • [33] NEW COMPACTIFICATIONS ON CALABI-YAU MANIFOLDS
    NEPOMECHIE, RI
    WU, YS
    ZEE, A
    PHYSICS LETTERS B, 1985, 158 (04) : 311 - 315
  • [34] Calabi-Yau manifolds and sporadic groups
    Andreas Banlaki
    Abhishek Chowdhury
    Abhiram Kidambi
    Maria Schimpf
    Harald Skarke
    Timm Wrase
    Journal of High Energy Physics, 2018
  • [35] ADE QUANTUM CALABI-YAU MANIFOLDS
    LYNKER, M
    SCHIMMRIGK, R
    NUCLEAR PHYSICS B, 1990, 339 (01) : 121 - 157
  • [36] On the degeneration of asymptotically conical Calabi–Yau metrics
    Tristan C. Collins
    Bin Guo
    Freid Tong
    Mathematische Annalen, 2022, 383 : 867 - 919
  • [37] Calabi-Yau and fractional Calabi-Yau categories
    Kuznetsov, Alexander
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2019, 753 : 239 - 267
  • [38] Neutral Calabi-Yau structures on Kodaira manifolds
    Fino, A
    Pedersen, H
    Poon, YS
    Sorensen, MW
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 248 (02) : 255 - 268
  • [39] Some results on generalized Calabi-Yau manifolds
    De Bartolomeis, Paolo
    Tomassini, Adriano
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2006, 3 (5-6) : 1273 - 1292
  • [40] Fano manifolds of Calabi-Yau Hodge type
    Iliev, Atanas
    Manivel, Laurent
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2015, 219 (06) : 2225 - 2244