CLASSIFICATION OF ASYMPTOTICALLY CONICAL CALABI-YAU MANIFOLDS

被引:1
|
作者
Conlon, Ronan j. [1 ]
Hein, Hans-joachim [2 ]
机构
[1] Univ Texas Dallas, Dept Math Sci, Richardson, TX 75080 USA
[2] Univ Munster, Math Inst, Munster, Germany
基金
美国国家科学基金会;
关键词
FLAT KAHLER-METRICS; SASAKI-EINSTEIN METRICS; CREPANT RESOLUTIONS; VERSAL DEFORMATION; SCALAR CURVATURE; C-N; EMBEDDINGS; CONSTRUCTION; UNIQUENESS; STABILITY;
D O I
10.1215/00127094-2023-0030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A Riemannian cone (C, gC) is by definition a warped product C = RC x L with boundary. We say that C is a Calabi-Yau cone if gC is a Ricci-flat K & auml;hler metric and if C admits a gC -parallel holomorphic volume form; this is equivalent to the cross-section (L, gL) being a Sasaki-Einstein manifold. In this paper, we give a complete classification of all smooth complete Calabi-Yau manifolds asymptotic to some given Calabi-Yau cone at a polynomial rate at infinity. As a special case, this includes a proof of Kronheimer's classification of ALE hyper-K & auml;hler 4-manifolds without twistor theory.
引用
收藏
页码:947 / 1015
页数:69
相关论文
共 50 条
  • [41] Orientability for gauge theories on Calabi-Yau manifolds
    Cao, Yalong
    Leung, Naichung Conan
    ADVANCES IN MATHEMATICS, 2017, 314 : 48 - 70
  • [42] COLLAPSING OF ABELIAN FIBERED CALABI-YAU MANIFOLDS
    Gross, Mark
    Tosatti, Valentino
    Zhang, Yuguang
    DUKE MATHEMATICAL JOURNAL, 2013, 162 (03) : 517 - 551
  • [43] Crystal Melting and Toric Calabi-Yau Manifolds
    Hirosi Ooguri
    Masahito Yamazaki
    Communications in Mathematical Physics, 2009, 292 : 179 - 199
  • [44] Holomorphic Cartan geometries and Calabi-Yau manifolds
    Biswas, Indranil
    McKay, Benjamin
    JOURNAL OF GEOMETRY AND PHYSICS, 2010, 60 (04) : 661 - 663
  • [45] Frobenius map on local Calabi-Yau manifolds
    Shapiro, I.
    JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (02)
  • [46] Holomorphic Parabolic Geometries and Calabi-Yau Manifolds
    McKay, Benjamin
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2011, 7
  • [47] GENERALIZED SPACETIME DUALITY IN CALABI-YAU MANIFOLDS
    CVETIC, M
    MOLERA, JM
    OVRUT, BA
    PHYSICS LETTERS B, 1990, 248 (1-2) : 83 - 88
  • [48] D-Branes on Calabi-Yau manifolds
    Douglas, MR
    EUROPEAN CONGRESS OF MATHEMATICS, VOL II, 2001, 202 : 449 - 466
  • [49] Crystal Melting and Toric Calabi-Yau Manifolds
    Ooguri, Hirosi
    Yamazaki, Masahito
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 292 (01) : 179 - 199
  • [50] Non-Kahler Calabi-Yau Manifolds
    Tseng, Li-Sheng
    Yau, Shing-Tung
    STRING-MATH 2011, 2012, 85 : 241 - +