CALABI-YAU DOMAINS IN THREE MANIFOLDS

被引:1
|
作者
Martin, Francisco [1 ]
Meeks, William H., III [2 ]
机构
[1] Univ Granada, Dept Geometry & Topol, E-18071 Granada, Spain
[2] Univ Massachusetts, Dept Math, Amherst, MA 01003 USA
基金
美国国家科学基金会;
关键词
PROPER MINIMAL-SURFACES; CONVEX-BODIES; BEHAVIOR; THEOREMS;
D O I
10.1353/ajm.2012.0037
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that for every smooth compact Riemannian three-manifold (W) over bar with nonempty boundary, there exists a smooth properly embedded one-manifold Delta subset of W = Int((W) over bar), each of whose components is a simple closed curve and such that the domain D = W - Delta does not admit any properly immersed open surfaces with at least one annular end, bounded mean curvature, compact boundary (possibly empty) and a complete induced Riemannian metric.
引用
收藏
页码:1329 / 1344
页数:16
相关论文
共 50 条