An Evolutionary Approach to Active Robust Multiobjective Optimisation

被引:2
|
作者
Salomon, Shaul [1 ]
Purshouse, Robin C. [1 ]
Avigad, Gideon [2 ]
Fleming, Peter J. [1 ]
机构
[1] Univ Sheffield, Dept Automat Control & Syst Engn, Sheffield S1 3JD, S Yorkshire, England
[2] ORT Braude Coll Engn, Dept Mech Engn, Karmiel, Israel
基金
英国工程与自然科学研究理事会;
关键词
Robust optimisation; Uncertainties; Multi-objective optimisation; Adaptation; Gearbox; Design;
D O I
10.1007/978-3-319-15892-1_10
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
An Active Robust Optimisation Problem (AROP) aims at finding robust adaptable solutions, i.e. solutions that actively gain robustness to environmental changes through adaptation. Existing AROP studies have considered only a single performance objective. This study extends the Active Robust Optimisation methodology to deal with problems with more than one objective. Once multiple objectives are considered, the optimal performance for every uncertain parameter setting is a set of configurations, offering different trade-offs between the objectives. To evaluate and compare solutions to this type of problems, we suggest a robustness indicator that uses a scalarising function combining the main aims of multi-objective optimisation: proximity, diversity and pertinence. The Active Robust Multi-objective Optimisation Problem is formulated in this study, and an evolutionary algorithm that uses the hypervolume measure as a scalarasing function is suggested in order to solve it. Proof-of-concept results are demonstrated using a simplified gearbox optimisation problem for an uncertain load demand.
引用
收藏
页码:141 / 155
页数:15
相关论文
共 50 条
  • [41] Robust nonlinear HVAC systems control with evolutionary optimisation
    Counsell, John
    Zaher, Obadah
    Brindley, Joseph
    Murphy, Gavin
    ENGINEERING COMPUTATIONS, 2013, 30 (08) : 1147 - 1169
  • [42] Interactive evolutionary multiobjective optimization driven by robust ordinal regression
    Branke, J.
    Greco, S.
    Slowinski, R.
    Zielniewicz, P.
    BULLETIN OF THE POLISH ACADEMY OF SCIENCES-TECHNICAL SCIENCES, 2010, 58 (03) : 347 - 358
  • [43] MULTIOBJECTIVE TUNING OF ROBUST GPC CONTROLLERS USING EVOLUTIONARY ALGORITHMS
    Herrero, J. M.
    Blasco, X.
    Martinez, M.
    Sanchis, J.
    IJCCI 2009: PROCEEDINGS OF THE INTERNATIONAL JOINT CONFERENCE ON COMPUTATIONAL INTELLIGENCE, 2009, : 263 - 268
  • [44] Multiobjective tuning of robust PID controllers using evolutionary algorithms
    Herrero, J. M.
    Blasco, X.
    Martinez, M.
    Sanchis, J.
    APPLICATIONS OF EVOLUTIONARY COMPUTING, PROCEEDINGS, 2008, 4974 : 515 - 524
  • [45] Interactive Evolutionary Multiobjective Optimization Using Robust Ordinal Regression
    Branke, Juergen
    Greco, Salvatore
    Slowinski, Roman
    Zielniewicz, Piotr
    EVOLUTIONARY MULTI-CRITERION OPTIMIZATION: 5TH INTERNATIONAL CONFERENCE, EMO 2009, 2009, 5467 : 554 - +
  • [46] A multiobjective hybrid evolutionary algorithm for robust design of distribution networks
    Carrano, Eduardo G.
    Taroco, Cristiane G.
    Neto, Oriane M.
    Takahashi, Ricardo H. C.
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2014, 63 : 645 - 656
  • [47] Constrained robust optimal design using a multiobjective evolutionary algorithm
    Ray, T
    CEC'02: PROCEEDINGS OF THE 2002 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2, 2002, : 419 - 424
  • [48] Multiobjective optimization under uncertainty: A multiobjective robust (relative) regret approach
    Groetzner, Patrick
    Werner, Ralf
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2022, 296 (01) : 101 - 115
  • [49] Surrogate-Assisted Multiobjective Evolutionary Algorithms for Structural Shape and Sizing Optimisation
    Kunakote, Tawatchai
    Bureerat, Sujin
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2013, 2013
  • [50] Tensegrity active control: Multiobjective approach
    Adam, Bernard
    Smith, Ian F. C.
    JOURNAL OF COMPUTING IN CIVIL ENGINEERING, 2007, 21 (01) : 3 - 10