An Evolutionary Approach to Active Robust Multiobjective Optimisation

被引:2
|
作者
Salomon, Shaul [1 ]
Purshouse, Robin C. [1 ]
Avigad, Gideon [2 ]
Fleming, Peter J. [1 ]
机构
[1] Univ Sheffield, Dept Automat Control & Syst Engn, Sheffield S1 3JD, S Yorkshire, England
[2] ORT Braude Coll Engn, Dept Mech Engn, Karmiel, Israel
基金
英国工程与自然科学研究理事会;
关键词
Robust optimisation; Uncertainties; Multi-objective optimisation; Adaptation; Gearbox; Design;
D O I
10.1007/978-3-319-15892-1_10
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
An Active Robust Optimisation Problem (AROP) aims at finding robust adaptable solutions, i.e. solutions that actively gain robustness to environmental changes through adaptation. Existing AROP studies have considered only a single performance objective. This study extends the Active Robust Optimisation methodology to deal with problems with more than one objective. Once multiple objectives are considered, the optimal performance for every uncertain parameter setting is a set of configurations, offering different trade-offs between the objectives. To evaluate and compare solutions to this type of problems, we suggest a robustness indicator that uses a scalarising function combining the main aims of multi-objective optimisation: proximity, diversity and pertinence. The Active Robust Multi-objective Optimisation Problem is formulated in this study, and an evolutionary algorithm that uses the hypervolume measure as a scalarasing function is suggested in order to solve it. Proof-of-concept results are demonstrated using a simplified gearbox optimisation problem for an uncertain load demand.
引用
收藏
页码:141 / 155
页数:15
相关论文
共 50 条
  • [21] MultiObjective Robust Network Design under Uncertain Traffic An approach based on Evolutionary Algorithm
    Arteta, Adolfo
    Pinto-Roa, Diego P.
    2015 XLI LATIN AMERICAN COMPUTING CONFERENCE (CLEI), 2015, : 148 - 157
  • [22] Multiobjective evolutionary optimisation for surface-enhanced Raman scattering
    Roger M. Jarvis
    William Rowe
    Nicola R. Yaffe
    Richard O’Connor
    Joshua D. Knowles
    Ewan W. Blanch
    Royston Goodacre
    Analytical and Bioanalytical Chemistry, 2010, 397 : 1893 - 1901
  • [23] Multiobjective evolutionary optimisation for surface-enhanced Raman scattering
    Jarvis, Roger M.
    Rowe, William
    Yaffe, Nicola R.
    O'Connor, Richard
    Knowles, Joshua D.
    Blanch, Ewan W.
    Goodacre, Royston
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2010, 397 (05) : 1893 - 1901
  • [24] Traffic control system optimisation: A multiobjective approach
    Sayers, T
    Anderson, J
    Bell, M
    MATHEMATICS IN TRANSPORT PLANNING AND CONTROL, 1998, : 37 - 46
  • [25] Evolutionary multiobjective optimization of Topological Active Nets
    Novo, J.
    Penedo, M. G.
    Santos, J.
    PATTERN RECOGNITION LETTERS, 2010, 31 (13) : 1781 - 1794
  • [26] An Evolutionary Multiobjective Approach to Sparse Reconstruction
    Li, Lin
    Yao, Xin
    Stolkin, Rustam
    Gong, Maoguo
    He, Shan
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2014, 18 (06) : 827 - 845
  • [27] Multiple objective evolutionary optimisation for robust design
    Salazar, Daniel E.
    Rocco, Claudio M.
    Zio, Enrico
    APPLIED ARTIFICIAL INTELLIGENCE, 2006, : 930 - +
  • [28] Application of Multiobjective Evolutionary Techniques for Robust Portfolio Optimization
    Garcia Rodriguez, Sandra
    INTERNATIONAL JOURNAL OF INTERACTIVE MULTIMEDIA AND ARTIFICIAL INTELLIGENCE, 2013, 2 (02): : 63 - 64
  • [29] Nonlinear robust identification using multiobjective evolutionary algorithms
    Herrero, JM
    Blasco, X
    Martínez, M
    Ramos, C
    ARTIFICIAL INTELLIGENCE AND KNOWLEDGE ENGINEERING APPLICATIONS: A BIOINSPIRED APPROACH, PT 2, PROCEEDINGS, 2005, 3562 : 231 - 241
  • [30] Automated design of aircraft fuselage stiffeners using multiobjective evolutionary optimisation
    Sarangkum, Ruangrit
    Wansasueb, Kittinan
    Panagant, Natee
    Pholdee, Nantiwat
    Bureerat, Sujin
    Yildiz, Ali R.
    Sait, Sadiq M.
    INTERNATIONAL JOURNAL OF VEHICLE DESIGN, 2019, 80 (2-4) : 162 - 175