An Evolutionary Approach to Active Robust Multiobjective Optimisation

被引:2
|
作者
Salomon, Shaul [1 ]
Purshouse, Robin C. [1 ]
Avigad, Gideon [2 ]
Fleming, Peter J. [1 ]
机构
[1] Univ Sheffield, Dept Automat Control & Syst Engn, Sheffield S1 3JD, S Yorkshire, England
[2] ORT Braude Coll Engn, Dept Mech Engn, Karmiel, Israel
基金
英国工程与自然科学研究理事会;
关键词
Robust optimisation; Uncertainties; Multi-objective optimisation; Adaptation; Gearbox; Design;
D O I
10.1007/978-3-319-15892-1_10
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
An Active Robust Optimisation Problem (AROP) aims at finding robust adaptable solutions, i.e. solutions that actively gain robustness to environmental changes through adaptation. Existing AROP studies have considered only a single performance objective. This study extends the Active Robust Optimisation methodology to deal with problems with more than one objective. Once multiple objectives are considered, the optimal performance for every uncertain parameter setting is a set of configurations, offering different trade-offs between the objectives. To evaluate and compare solutions to this type of problems, we suggest a robustness indicator that uses a scalarising function combining the main aims of multi-objective optimisation: proximity, diversity and pertinence. The Active Robust Multi-objective Optimisation Problem is formulated in this study, and an evolutionary algorithm that uses the hypervolume measure as a scalarasing function is suggested in order to solve it. Proof-of-concept results are demonstrated using a simplified gearbox optimisation problem for an uncertain load demand.
引用
收藏
页码:141 / 155
页数:15
相关论文
共 50 条
  • [31] Searching for an efficient method in multiobjective frame optimisation using evolutionary algorithms
    Greiner, D
    Winter, G
    Emperador, JM
    COMPUTATIONAL FLUID AND SOLID MECHANICS 2003, VOLS 1 AND 2, PROCEEDINGS, 2003, : 2285 - 2290
  • [32] Identifying vulnerabilities of industrial control systems using evolutionary multiobjective optimisation
    Tuptuk, Nilufer
    Hailes, Stephen
    COMPUTERS & SECURITY, 2024, 137
  • [33] The Automotive Deployment Problem: A Practical Application for Constrained Multiobjective Evolutionary Optimisation
    Moser, Irene
    Mostaghim, Sanaz
    2010 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2010,
  • [34] A multiobjective optimisation approach for the conceptual design of frame structures
    Suppapitnarm, A
    Parks, GT
    Shea, K
    Clarkson, PJ
    ADAPTIVE COMPUTING IN DESIGN AND MANUFACTURE V, 2002, : 109 - 120
  • [35] Multiobjective optimisation of cutting parameters in machining -a sustainable approach
    Agarwal, Gunjan
    Khare, M. K.
    MATERIALS TODAY-PROCEEDINGS, 2021, 46 : 5535 - 5543
  • [36] A multiobjective evolutionary approach for multisite mapping on grids
    De Falco, Ivanoe
    Della Cioppa, Antonio
    Scafuri, Umberto
    Tarantino, Ernesto
    PARALLEL PROCESSING AND APPLIED MATHEMATICS, 2008, 4967 : 991 - +
  • [37] Multiobjective Evolutionary Approach to Optimal Reservoir Operation
    Schardong, Andre
    Simonovic, Slobodan P.
    Vasan, A.
    JOURNAL OF COMPUTING IN CIVIL ENGINEERING, 2013, 27 (02) : 139 - 147
  • [38] A Jumping Gene Evolutionary Approach for Multiobjective Optimization
    Tang, Wallace K. S.
    Yeung, Chris S. H.
    Man, K. F.
    ICT INNOVATIONS 2011, 2011, 150 : 1 - 14
  • [39] An evolutionary multiobjective approach for the Component Selection Problem
    Vescan, Andreea
    2008 FIRST INTERNATIONAL CONFERENCE ON THE APPLICATIONS OF DIGITAL INFORMATION AND WEB TECHNOLOGIES, VOLS 1 AND 2, 2008, : 259 - 264
  • [40] A realistic approach to evolutionary multiobjective portfolio optimization
    Chiam, S. C.
    Al Mamun, A.
    Low, Y. L.
    2007 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-10, PROCEEDINGS, 2007, : 204 - 211