Interactive evolutionary multiobjective optimization driven by robust ordinal regression

被引:25
|
作者
Branke, J. [2 ]
Greco, S. [3 ]
Slowinski, R. [1 ,4 ]
Zielniewicz, P. [1 ]
机构
[1] Poznan Univ Tech, Inst Comp Sci, PL-60965 Poznan, Poland
[2] Univ Warwick, Warwick Business Sch, Coventry CV4 7AL, W Midlands, England
[3] Univ Catania, Fac Econ, I-95131 Catania, Italy
[4] Polish Acad Sci, Syst Res Inst, PL-01447 Warsaw, Poland
关键词
evolutionary multiobjective optimization; interactive procedure; robust ordinal regression; ALGORITHM; SET;
D O I
10.2478/v10175-010-0033-3
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper presents the Necessary preference enhanced Evolutionary Multiobjective Optimizer (NEMO) which combines an evolutionary multiobjective optimization with robust ordinal regression within an interactive procedure In the course of NEMO the decision maker is asked to express preferences by simply comparing some pairs of solutions in the current population The whole set of additive value functions compatible with this preference information is used within a properly modified version of the evolutionary multiobjective optimization technique NSGA-II in order to focus the search towards solutions satisfying the preferences of the decision maker This allows to speed up convergence to the most preferred region of the Pareto front
引用
收藏
页码:347 / 358
页数:12
相关论文
共 50 条
  • [1] Interactive Evolutionary Multiobjective Optimization Using Robust Ordinal Regression
    Branke, Juergen
    Greco, Salvatore
    Slowinski, Roman
    Zielniewicz, Piotr
    EVOLUTIONARY MULTI-CRITERION OPTIMIZATION: 5TH INTERNATIONAL CONFERENCE, EMO 2009, 2009, 5467 : 554 - +
  • [2] INTERACTIVE MULTIOBJECTIVE OPTIMIZATION BASED ON ORDINAL REGRESSION
    SLOWINSKI, R
    LECTURE NOTES IN ECONOMICS AND MATHEMATICAL SYSTEMS, 1991, 351 : 93 - 100
  • [3] EMOSOR: Evolutionary multiple objective optimization guided by interactive stochastic ordinal regression
    Tomczyk, Michal K.
    Kadzinski, Milosz
    COMPUTERS & OPERATIONS RESEARCH, 2019, 108 : 134 - 154
  • [4] Interactive Robust Multiobjective Optimization Driven by Decision Rule Preference Model
    Slowinski, Roman
    MODELING DECISIONS FOR ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2009, 5861 : 1 - 4
  • [5] Explainable interactive evolutionary multiobjective optimization
    Corrente, Salvatore
    Greco, Salvatore
    Matarazzo, Benedetto
    Slowinski, Roman
    OMEGA-INTERNATIONAL JOURNAL OF MANAGEMENT SCIENCE, 2024, 122
  • [6] Using Ordinal Regression for Interactive Evolutionary Multiple Objective Optimization with Multiple Decision Makers
    Kadzinski, Milosz
    Tomczyk, Michal
    OUTLOOKS AND INSIGHTS ON GROUP DECISION AND NEGOTIATION, GDN 2015, 2015, 218 : 185 - 198
  • [7] An interactive evolutionary metaheuristic for multiobjective combinatorial optimization
    Phelps, S
    Köksalan, M
    MANAGEMENT SCIENCE, 2003, 49 (12) : 1726 - 1738
  • [8] Robust Multiobjective Optimization via Evolutionary Algorithms
    He, Zhenan
    Yen, Gary G.
    Yi, Zhang
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2019, 23 (02) : 316 - 330
  • [9] Learning Value Functions in Interactive Evolutionary Multiobjective Optimization
    Branke, Juergen
    Greco, Salvatore
    Slowinski, Roman
    Zielniewicz, Piotr
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2015, 19 (01) : 88 - 102
  • [10] A Performance Indicator for Interactive Evolutionary Multiobjective Optimization Methods
    Pour, Pouya Aghaei
    Bandaru, Sunith
    Afsar, Bekir
    Emmerich, Michael
    Miettinen, Kaisa
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2024, 28 (03) : 778 - 787