Interactive evolutionary multiobjective optimization driven by robust ordinal regression

被引:25
|
作者
Branke, J. [2 ]
Greco, S. [3 ]
Slowinski, R. [1 ,4 ]
Zielniewicz, P. [1 ]
机构
[1] Poznan Univ Tech, Inst Comp Sci, PL-60965 Poznan, Poland
[2] Univ Warwick, Warwick Business Sch, Coventry CV4 7AL, W Midlands, England
[3] Univ Catania, Fac Econ, I-95131 Catania, Italy
[4] Polish Acad Sci, Syst Res Inst, PL-01447 Warsaw, Poland
关键词
evolutionary multiobjective optimization; interactive procedure; robust ordinal regression; ALGORITHM; SET;
D O I
10.2478/v10175-010-0033-3
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper presents the Necessary preference enhanced Evolutionary Multiobjective Optimizer (NEMO) which combines an evolutionary multiobjective optimization with robust ordinal regression within an interactive procedure In the course of NEMO the decision maker is asked to express preferences by simply comparing some pairs of solutions in the current population The whole set of additive value functions compatible with this preference information is used within a properly modified version of the evolutionary multiobjective optimization technique NSGA-II in order to focus the search towards solutions satisfying the preferences of the decision maker This allows to speed up convergence to the most preferred region of the Pareto front
引用
收藏
页码:347 / 358
页数:12
相关论文
共 50 条
  • [21] Robust estimation for ordinal regression
    Croux, C.
    Haesbroeck, G.
    Ruwet, C.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2013, 143 (09) : 1486 - 1499
  • [22] Robust Multiobjective Optimization using Regression Models and Linear Subproblems
    Goulart, Fillipe
    Borges, Silvio T.
    Takahashi, Fernanda C.
    Campelo, Felipe
    PROCEEDINGS OF THE 2017 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'17), 2017, : 569 - 576
  • [23] A regularity property-driven evolutionary algorithm for multiobjective optimization
    Gao, Xiangzhou
    Zhang, Hu
    Song, Shenmin
    SWARM AND EVOLUTIONARY COMPUTATION, 2023, 78
  • [24] A Knee Point Driven Evolutionary Algorithm for Multiobjective Bilevel Optimization
    Chen, Jiaxin
    Ding, Jinliang
    Li, Ke
    Tan, Kay Chen
    Chai, Tianyou
    IEEE TRANSACTIONS ON CYBERNETICS, 2024, 54 (07) : 4177 - 4189
  • [25] Interactive Evolutionary Multiobjective Search and Optimization of Set-Based Concepts
    Avigad, Gideon
    Moshaiov, Amiram
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2009, 39 (04): : 1013 - 1027
  • [26] Comparing interactive evolutionary multiobjective optimization methods with an artificial decision maker
    Afsar, Bekir
    Ruiz, Ana B.
    Miettinen, Kaisa
    COMPLEX & INTELLIGENT SYSTEMS, 2023, 9 (02) : 1165 - 1181
  • [27] Using Choquet integral as preference model in interactive evolutionary multiobjective optimization
    Branke, Juergen
    Corrente, Salvatore
    Greco, Salvatore
    Slowinski, Roman
    Zielniewicz, Piotr
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2016, 250 (03) : 884 - 901
  • [28] Evolutionary Multiobjective Optimization Driven by Generative Adversarial Networks (GANs)
    He, Cheng
    Huang, Shihua
    Cheng, Ran
    Tan, Kay Chen
    Jin, Yaochu
    IEEE TRANSACTIONS ON CYBERNETICS, 2021, 51 (06) : 3129 - 3142
  • [29] Comparing interactive evolutionary multiobjective optimization methods with an artificial decision maker
    Bekir Afsar
    Ana B. Ruiz
    Kaisa Miettinen
    Complex & Intelligent Systems, 2023, 9 : 1165 - 1181
  • [30] Gaussian process regression for evolutionary dynamic multiobjective optimization in complex environments
    Deng, Youpeng
    Zheng, Yan
    Meng, Zhaopeng
    Gao, Haobo
    Hua, Yueyang
    Jin, Qiangguo
    Cao, Leilei
    SWARM AND EVOLUTIONARY COMPUTATION, 2025, 94