DENSITY MATRIX MINIMIZATION WITH l1 REGULARIZATION

被引:8
|
作者
Lai, Rongjie [1 ]
Lu, Jianfeng [2 ,3 ,4 ]
Osher, Stanley [5 ,6 ]
机构
[1] Rensselaer Polytech Inst, Dept Math, Troy, NY 12180 USA
[2] Duke Univ, Dept Math, Durham, NC 27708 USA
[3] Duke Univ, Dept Phys, Durham, NC 27708 USA
[4] Duke Univ, Dept Chem, Durham, NC 27708 USA
[5] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[6] Univ Calif Los Angeles, Inst Pure & Appl Math, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
Density matrix; l(1) regularization; eigenspace; GENERALIZED WANNIER FUNCTIONS; EXISTENCE; BLOCH;
D O I
10.4310/CMS.2015.v13.n8.a6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a convex variational principle to find sparse representation of low-lying eigenspace of symmetric matrices. In the context of electronic structure calculation, this corresponds to a sparse density matrix minimization algorithm with l(1) regularization. The minimization problem can be efficiently solved by a split Bregman iteration type algorithm. We further prove that from any initial condition, the algorithm converges to a minimizer of the variational principle.
引用
收藏
页码:2097 / 2117
页数:21
相关论文
共 50 条
  • [1] Orbital minimization method with l1 regularization
    Lu, Jianfeng
    Thicke, Kyle
    JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 336 : 87 - 103
  • [2] An l1 minimization algorithm for non-smooth regularization in image processing
    Ramirez, Carlos
    Argaez, Miguel
    SIGNAL IMAGE AND VIDEO PROCESSING, 2015, 9 (02) : 373 - 386
  • [3] L1/2 regularization
    ZongBen Xu
    Hai Zhang
    Yao Wang
    XiangYu Chang
    Yong Liang
    Science China Information Sciences, 2010, 53 : 1159 - 1169
  • [4] L1/2 regularization
    XU ZongBen 1
    2 Department of Mathematics
    3 University of Science and Technology
    Science China(Information Sciences), 2010, 53 (06) : 1159 - 1169
  • [5] A Constrained l1 Minimization Approach to Sparse Precision Matrix Estimation
    Cai, Tony
    Liu, Weidong
    Luo, Xi
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2011, 106 (494) : 594 - 607
  • [6] The Group-Lasso: l1,∞ Regularization versus l1,2 Regularization
    Vogt, Julia E.
    Roth, Volker
    PATTERN RECOGNITION, 2010, 6376 : 252 - 261
  • [7] Relating lp regularization and reweighted l1 regularization
    Wang, Hao
    Zeng, Hao
    Wang, Jiashan
    Wu, Qiong
    OPTIMIZATION LETTERS, 2021, 15 (08) : 2639 - 2660
  • [8] Sparse spatial filter via a novel objective function minimization with smooth l1 regularization
    Onaran, Ibrahim
    Ince, N. Firat
    Cetin, A. Enis
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2013, 8 (03) : 282 - 288
  • [9] l1 MINIMIZATION WITH NOISY DATA
    Wojtaszczyk, P.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2012, 50 (02) : 458 - 467
  • [10] Dynamic Updating for l1 Minimization
    Asif, M. Salman
    Romberg, Justin
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2010, 4 (02) : 421 - 434