A Constrained l1 Minimization Approach to Sparse Precision Matrix Estimation

被引:630
|
作者
Cai, Tony [1 ]
Liu, Weidong [1 ]
Luo, Xi [1 ]
机构
[1] Univ Penn, Wharton Sch, Dept Stat, Philadelphia, PA 19104 USA
基金
美国国家科学基金会;
关键词
Covariance matrix; Frobenius norm; Gaussian graphical model; Precision matrix; Rate of convergence; Spectral norm; VARIABLE SELECTION; COVARIANCE; CONVERGENCE; LIKELIHOOD; RECOVERY; RATES; MODEL;
D O I
10.1198/jasa.2011.tm10155
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article proposes a constrained l(1) minimization method for estimating a sparse inverse covariance matrix based on a sample of n iid p-variate random variables. The resulting estimator is shown to have a number of desirable properties. In particular, the rate of convergence between the estimator and the true s-sparse precision matrix under the spectral norm is s root logp/n when the population distribution has either exponential-type tails or polynomial-type tails. We present convergence rates under the elementwise l(infinity) norm and Frobenius norm. In addition, we consider graphical model selection. The procedure is easily implemented by linear programming. Numerical performance of the estimator is investigated using both simulated and real data. In particular, the procedure is applied to analyze a breast cancer dataset and is found to perform favorably compared with existing methods.
引用
收藏
页码:594 / 607
页数:14
相关论文
共 50 条
  • [1] THE EFFECT OF L1 PENALIZATION ON CONDITION NUMBER CONSTRAINED ESTIMATION OF PRECISION MATRIX
    Guo, Xiao
    Zhang, Chunming
    STATISTICA SINICA, 2017, 27 (03) : 1299 - 1317
  • [2] Selective l1 Minimization for Sparse Recovery
    Van Luong Le
    Lauer, Fabien
    Bloch, Gerard
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2014, 59 (11) : 3008 - 3013
  • [3] On the inconsistency of l1-penalised sparse precision matrix estimation
    Heinavaara, Otte
    Leppa-aho, Janne
    Corander, Jukka
    Honkela, Antti
    BMC BIOINFORMATICS, 2016, 17
  • [4] On Recovery of Sparse Signals Via l1 Minimization
    Cai, T. Tony
    Xu, Guangwu
    Zhang, Jun
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2009, 55 (07) : 3388 - 3397
  • [5] Sparse signal recovery via l1 minimization
    Romberg, Justin K.
    2006 40TH ANNUAL CONFERENCE ON INFORMATION SCIENCES AND SYSTEMS, VOLS 1-4, 2006, : 213 - 215
  • [6] DENSITY MATRIX MINIMIZATION WITH l1 REGULARIZATION
    Lai, Rongjie
    Lu, Jianfeng
    Osher, Stanley
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2015, 13 (08) : 2097 - 2117
  • [7] From L1 Minimization to Entropy Minimization: A Novel Approach for Sparse Signal Recovery in Compressive Sensing
    Conde, Miguel Heredia
    Loffeld, Otmar
    2018 26TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2018, : 568 - 572
  • [8] Sparse density estimation with l1 penalties
    Bunea, Florentina
    Tsybakov, Alexandre B.
    Wegkamp, Marten H.
    LEARNING THEORY, PROCEEDINGS, 2007, 4539 : 530 - +
  • [9] Analyzing Weighted l1 Minimization for Sparse Recovery With Nonuniform Sparse Models
    Khajehnejad, M. Amin
    Xu, Weiyu
    Avestimehr, A. Salman
    Hassibi, Babak
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2011, 59 (05) : 1985 - 2001
  • [10] AN APPROACH OF DOA ESTIMATION USING NOISE SUBSPACE WEIGHTED l1 MINIMIZATION
    Zheng, Chundi
    Li, Gang
    Zhang, Hao
    Wang, Xiqin
    2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 2856 - 2859