A Constrained l1 Minimization Approach to Sparse Precision Matrix Estimation

被引:630
|
作者
Cai, Tony [1 ]
Liu, Weidong [1 ]
Luo, Xi [1 ]
机构
[1] Univ Penn, Wharton Sch, Dept Stat, Philadelphia, PA 19104 USA
基金
美国国家科学基金会;
关键词
Covariance matrix; Frobenius norm; Gaussian graphical model; Precision matrix; Rate of convergence; Spectral norm; VARIABLE SELECTION; COVARIANCE; CONVERGENCE; LIKELIHOOD; RECOVERY; RATES; MODEL;
D O I
10.1198/jasa.2011.tm10155
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article proposes a constrained l(1) minimization method for estimating a sparse inverse covariance matrix based on a sample of n iid p-variate random variables. The resulting estimator is shown to have a number of desirable properties. In particular, the rate of convergence between the estimator and the true s-sparse precision matrix under the spectral norm is s root logp/n when the population distribution has either exponential-type tails or polynomial-type tails. We present convergence rates under the elementwise l(infinity) norm and Frobenius norm. In addition, we consider graphical model selection. The procedure is easily implemented by linear programming. Numerical performance of the estimator is investigated using both simulated and real data. In particular, the procedure is applied to analyze a breast cancer dataset and is found to perform favorably compared with existing methods.
引用
收藏
页码:594 / 607
页数:14
相关论文
共 50 条
  • [21] Design of FIR Filter Using Constrained L1 Minimization Method
    Tseng, Chien-Cheng
    Lee, Su-Ling
    TENCON 2009 - 2009 IEEE REGION 10 CONFERENCE, VOLS 1-4, 2009, : 2310 - +
  • [22] L1 Norm Minimization approach to MIMO detector
    Hashimoto, Yo
    Konishi, Katsumi
    Takahashi, Tomohiro
    Uruma, Kazunori
    Furukawa, Toshihiro
    2014 8TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATION SYSTEMS (ICSPCS), 2014,
  • [23] Block sparse recovery via mixed l2/l1 minimization
    Jun Hong Lin
    Song Li
    Acta Mathematica Sinica, English Series, 2013, 29 : 1401 - 1412
  • [24] Block Sparse Recovery via Mixed l2/l1 Minimization
    Jun Hong LIN
    Song LI
    Acta Mathematica Sinica,English Series, 2013, (07) : 1401 - 1412
  • [25] Seismic wavelet phase estimation by l1 norm minimization
    Gelpi, Gabriel R.
    Perez, Daniel O.
    Velis, Danilo R.
    2017 XVII WORKSHOP ON INFORMATION PROCESSING AND CONTROL (RPIC), 2017,
  • [26] On the inconsistency of ℓ1-penalised sparse precision matrix estimation
    Otte Heinävaara
    Janne Leppä-aho
    Jukka Corander
    Antti Honkela
    BMC Bioinformatics, 17
  • [27] PENALIZED L1 MINIMIZATION FOR RECONSTRUCTION OF TIME-VARYING SPARSE SIGNALS
    Chen, Wei
    Rodrigues, Miguel R. D.
    Wassell, Ian J.
    2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 3988 - 3991
  • [28] Dynamic Filtering of Sparse Signals via l1 Minimization with Variant Parameters
    Shen, Zhubin
    Song, Enbin
    2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 4409 - 4414
  • [29] On verifiable sufficient conditions for sparse signal recovery via l1 minimization
    Juditsky, Anatoli
    Nemirovski, Arkadi
    MATHEMATICAL PROGRAMMING, 2011, 127 (01) : 57 - 88
  • [30] Optimally sparse representation in general (nonorthogonal) dictionaries via l1 minimization
    Donoho, DL
    Elad, M
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (05) : 2197 - 2202