A Constrained l1 Minimization Approach to Sparse Precision Matrix Estimation

被引:630
|
作者
Cai, Tony [1 ]
Liu, Weidong [1 ]
Luo, Xi [1 ]
机构
[1] Univ Penn, Wharton Sch, Dept Stat, Philadelphia, PA 19104 USA
基金
美国国家科学基金会;
关键词
Covariance matrix; Frobenius norm; Gaussian graphical model; Precision matrix; Rate of convergence; Spectral norm; VARIABLE SELECTION; COVARIANCE; CONVERGENCE; LIKELIHOOD; RECOVERY; RATES; MODEL;
D O I
10.1198/jasa.2011.tm10155
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article proposes a constrained l(1) minimization method for estimating a sparse inverse covariance matrix based on a sample of n iid p-variate random variables. The resulting estimator is shown to have a number of desirable properties. In particular, the rate of convergence between the estimator and the true s-sparse precision matrix under the spectral norm is s root logp/n when the population distribution has either exponential-type tails or polynomial-type tails. We present convergence rates under the elementwise l(infinity) norm and Frobenius norm. In addition, we consider graphical model selection. The procedure is easily implemented by linear programming. Numerical performance of the estimator is investigated using both simulated and real data. In particular, the procedure is applied to analyze a breast cancer dataset and is found to perform favorably compared with existing methods.
引用
收藏
页码:594 / 607
页数:14
相关论文
共 50 条
  • [31] A Null-Space-Based Genetic Algorithm for Constrained l1 Minimization
    Conde, Miguel Heredia
    Hage, Dunja
    Loffeld, Otmar
    2017 IEEE INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND INFORMATION TECHNOLOGY (ISSPIT), 2017, : 294 - 299
  • [32] CONSTRAINED L1 ESTIMATION VIA GEOMETRIC-PROGRAMMING
    DINKEL, JJ
    PFAFFENBERGER, RC
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1981, 7 (03) : 299 - 305
  • [33] MINIMIZATION OF L1 OVER L2 FOR SPARSE SIGNAL RECOVERY WITH CONVERGENCE GUARANTEE
    Tao, M. I. N.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2022, 44 (02): : A770 - A797
  • [34] The matrix splitting based proximal fixed-point algorithms for quadratically constrained l1 minimization and Dantzig selector
    Yu, Yongchao
    Peng, Jigen
    APPLIED NUMERICAL MATHEMATICS, 2018, 125 : 23 - 50
  • [35] Acoustic source identification: Experimenting the l1 minimization approach
    Simard, Patrice
    Antoni, Jerome
    APPLIED ACOUSTICS, 2013, 74 (07) : 974 - 986
  • [36] METHODS OF L1 ESTIMATION OF A COVARIANCE-MATRIX
    GALPIN, JS
    HAWKINS, DM
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1987, 5 (04) : 305 - 319
  • [37] Adjusting for high-dimensional covariates in sparse precision matrix estimation by l1-penalization
    Yin, Jianxin
    Li, Hongzhe
    JOURNAL OF MULTIVARIATE ANALYSIS, 2013, 116 : 365 - 381
  • [38] Sparse precision matrix estimation with missing observations
    Zhang, Ning
    Yang, Jin
    COMPUTATIONAL STATISTICS, 2023, 38 (03) : 1337 - 1355
  • [39] Sparse precision matrix estimation with missing observations
    Ning Zhang
    Jin Yang
    Computational Statistics, 2023, 38 : 1337 - 1355
  • [40] On estimation of the diagonal elements of a sparse precision matrix
    Balmand, Samuel
    ELECTRONIC JOURNAL OF STATISTICS, 2016, 10 (01): : 1551 - 1579