DENSITY MATRIX MINIMIZATION WITH l1 REGULARIZATION

被引:8
|
作者
Lai, Rongjie [1 ]
Lu, Jianfeng [2 ,3 ,4 ]
Osher, Stanley [5 ,6 ]
机构
[1] Rensselaer Polytech Inst, Dept Math, Troy, NY 12180 USA
[2] Duke Univ, Dept Math, Durham, NC 27708 USA
[3] Duke Univ, Dept Phys, Durham, NC 27708 USA
[4] Duke Univ, Dept Chem, Durham, NC 27708 USA
[5] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[6] Univ Calif Los Angeles, Inst Pure & Appl Math, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
Density matrix; l(1) regularization; eigenspace; GENERALIZED WANNIER FUNCTIONS; EXISTENCE; BLOCH;
D O I
10.4310/CMS.2015.v13.n8.a6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a convex variational principle to find sparse representation of low-lying eigenspace of symmetric matrices. In the context of electronic structure calculation, this corresponds to a sparse density matrix minimization algorithm with l(1) regularization. The minimization problem can be efficiently solved by a split Bregman iteration type algorithm. We further prove that from any initial condition, the algorithm converges to a minimizer of the variational principle.
引用
收藏
页码:2097 / 2117
页数:21
相关论文
共 50 条
  • [21] L1 NORM MINIMIZATION IN GPS NETWORKS
    Yetkin, M.
    Inal, C.
    SURVEY REVIEW, 2011, 43 (323) : 523 - 532
  • [22] Stochastic PCA with l2 and l1 Regularization
    Mianjy, Poorya
    Arora, Raman
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [23] αl1 - βl2 regularization for sparse recovery
    Ding, Liang
    Han, Weimin
    INVERSE PROBLEMS, 2019, 35 (12)
  • [24] ELM with L1/L2 regularization constraints
    Feng B.
    Qin K.
    Jiang Z.
    Hanjie Xuebao/Transactions of the China Welding Institution, 2018, 39 (09): : 31 - 35
  • [25] ROBUST NONNEGATIVE MATRIX FACTORIZATION VIA L1 NORM REGULARIZATION BY MULTIPLICATIVE UPDATING RULES
    Shen, Bin
    Liu, Bao-Di
    Wang, Qifan
    Ji, Rongrong
    2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 5282 - 5286
  • [26] Convergence of the reweighted l1 minimization algorithm for l2-lp minimization
    Chen, Xiaojun
    Zhou, Weijun
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2014, 59 (1-2) : 47 - 61
  • [27] Cooperation of Boundary Attention and Negative Matrix L1 Regularization Loss Function for Polyp Segmentation
    Liu, Guoqi
    Zhao, Manqi
    Bai, Lu
    Guo, Zhengnan
    2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, : 82 - 88
  • [28] A study of learning a sparse metric matrix using l1 regularization based on supervised learning
    Mikawa, Kenta
    Kobayashi, Manabu
    Goto, Masayuki
    Journal of Japan Industrial Management Association, 2015, 66 (03) : 230 - 239
  • [29] Accelerated schemes for the L1/L2 minimization
    Wang C.
    Yan M.
    Rahimi Y.
    Lou Y.
    IEEE Transactions on Signal Processing, 2020, 68 : 2660 - 2669
  • [30] Compact Deep Neural Networks with l1,1 and l1,2 Regularization
    Ma, Rongrong
    Niu, Lingfeng
    2018 18TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW), 2018, : 1248 - 1254