DENSITY MATRIX MINIMIZATION WITH l1 REGULARIZATION

被引:8
|
作者
Lai, Rongjie [1 ]
Lu, Jianfeng [2 ,3 ,4 ]
Osher, Stanley [5 ,6 ]
机构
[1] Rensselaer Polytech Inst, Dept Math, Troy, NY 12180 USA
[2] Duke Univ, Dept Math, Durham, NC 27708 USA
[3] Duke Univ, Dept Phys, Durham, NC 27708 USA
[4] Duke Univ, Dept Chem, Durham, NC 27708 USA
[5] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[6] Univ Calif Los Angeles, Inst Pure & Appl Math, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
Density matrix; l(1) regularization; eigenspace; GENERALIZED WANNIER FUNCTIONS; EXISTENCE; BLOCH;
D O I
10.4310/CMS.2015.v13.n8.a6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a convex variational principle to find sparse representation of low-lying eigenspace of symmetric matrices. In the context of electronic structure calculation, this corresponds to a sparse density matrix minimization algorithm with l(1) regularization. The minimization problem can be efficiently solved by a split Bregman iteration type algorithm. We further prove that from any initial condition, the algorithm converges to a minimizer of the variational principle.
引用
收藏
页码:2097 / 2117
页数:21
相关论文
共 50 条
  • [31] Parameter choices for sparse regularization with the l1 norm
    Liu, Qianru
    Wang, Rui
    Xu, Yuesheng
    Yan, Mingsong
    INVERSE PROBLEMS, 2023, 39 (02)
  • [32] Asymptotic properties for combined L1 and concave regularization
    Fan, Yingying
    Lv, Jinchi
    BIOMETRIKA, 2014, 101 (01) : 57 - 70
  • [34] Robust censored regression with l1 -norm regularization
    Beyhum, Jad
    Van Keilegom, Ingrid
    TEST, 2023, 32 (01) : 146 - 162
  • [35] Oriented total variation l1/2 regularization
    Jiang, Wenfei
    Cui, Hengbin
    Zhang, Fan
    Rong, Yaocheng
    Chen, Zhibo
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2015, 29 : 125 - 137
  • [36] Training Compact DNNs with l1/2 Regularization
    Tang, Anda
    Niu, Lingfeng
    Miao, Jianyu
    Zhang, Peng
    PATTERN RECOGNITION, 2023, 136
  • [37] An l1 Regularization Framework for Optimal Rule Combination
    Han, Yanjun
    Wang, Jue
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, PT I, 2009, 5781 : 501 - 516
  • [38] An approximation theory approach to learning with l1 regularization
    Wang, Hong-Yan
    Xiao, Quan-Wu
    Zhou, Ding-Xuan
    JOURNAL OF APPROXIMATION THEORY, 2013, 167 : 240 - 258
  • [39] Sparse Hopfield network reconstruction with l1 regularization
    Huang, Haiping
    EUROPEAN PHYSICAL JOURNAL B, 2013, 86 (11):
  • [40] Feature Selection with L1 Regularization in Formal Neurons
    Bobrowski, Leon
    ENGINEERING APPLICATIONS OF NEURAL NETWORKS, EANN 2024, 2024, 2141 : 343 - 353