Orbital minimization method with l1 regularization

被引:7
|
作者
Lu, Jianfeng [1 ,2 ]
Thicke, Kyle [3 ]
机构
[1] Duke Univ, Dept Math, Dept Phys, Box 90320, Durham, NC 27708 USA
[2] Duke Univ, Dept Chem, Box 90320, Durham, NC 27708 USA
[3] Duke Univ, Dept Math, Box 90320, Durham, NC 27708 USA
基金
美国国家科学基金会;
关键词
Sparse representation; Low-lying eigenspace; Orbital minimization method; Electronic structure; ELECTRONIC-STRUCTURE CALCULATIONS; ALGORITHM;
D O I
10.1016/j.jcp.2017.02.005
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We consider a modification of the orbital minimization method (OMM) energy functional which contains an l(1) penalty term in order to find a sparse representation of the low-lying eigenspace of self-adjoint operators. We analyze the local minima of the modified functional as well as the convergence of the modified functional to the original functional. Algorithms combining soft thresholding with gradient descent are proposed for minimizing this new functional. Numerical tests validate our approach. In addition, we also prove the unanticipated and remarkable property that every local minimum of the OMM functional without the l(1) term is also a global minimum. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:87 / 103
页数:17
相关论文
共 50 条
  • [1] DENSITY MATRIX MINIMIZATION WITH l1 REGULARIZATION
    Lai, Rongjie
    Lu, Jianfeng
    Osher, Stanley
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2015, 13 (08) : 2097 - 2117
  • [2] An l1 minimization algorithm for non-smooth regularization in image processing
    Ramirez, Carlos
    Argaez, Miguel
    SIGNAL IMAGE AND VIDEO PROCESSING, 2015, 9 (02) : 373 - 386
  • [3] New method for solving l1 norm minimization
    Li, Wen jan
    Shiyou Daxue Xuebao/Journal of the University of Petroleum China, 1995, 19 (02):
  • [4] L1/2 regularization
    ZongBen Xu
    Hai Zhang
    Yao Wang
    XiangYu Chang
    Yong Liang
    Science China Information Sciences, 2010, 53 : 1159 - 1169
  • [5] L1/2 regularization
    XU ZongBen 1
    2 Department of Mathematics
    3 University of Science and Technology
    Science China(Information Sciences), 2010, 53 (06) : 1159 - 1169
  • [6] AN l1 - lp DC REGULARIZATION METHOD FOR COMPRESSED SENSING
    Cao, Wenhe
    Ku, Hong-Kun
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2020, 21 (09) : 1889 - 1901
  • [7] The Group-Lasso: l1,∞ Regularization versus l1,2 Regularization
    Vogt, Julia E.
    Roth, Volker
    PATTERN RECOGNITION, 2010, 6376 : 252 - 261
  • [8] On the convergence of an active-set method for l1 minimization
    Wen, Zaiwen
    Yin, Wotao
    Zhang, Hongchao
    Goldfarb, Donald
    OPTIMIZATION METHODS & SOFTWARE, 2012, 27 (06): : 1127 - 1146
  • [9] A DUAL SPLIT BREGMAN METHOD FOR FAST l1 MINIMIZATION
    Yang, Yi
    Moeller, Michael
    Osher, Stanley
    MATHEMATICS OF COMPUTATION, 2013, 82 (284) : 2061 - 2085
  • [10] Relating lp regularization and reweighted l1 regularization
    Wang, Hao
    Zeng, Hao
    Wang, Jiashan
    Wu, Qiong
    OPTIMIZATION LETTERS, 2021, 15 (08) : 2639 - 2660