Orbital minimization method with l1 regularization

被引:7
|
作者
Lu, Jianfeng [1 ,2 ]
Thicke, Kyle [3 ]
机构
[1] Duke Univ, Dept Math, Dept Phys, Box 90320, Durham, NC 27708 USA
[2] Duke Univ, Dept Chem, Box 90320, Durham, NC 27708 USA
[3] Duke Univ, Dept Math, Box 90320, Durham, NC 27708 USA
基金
美国国家科学基金会;
关键词
Sparse representation; Low-lying eigenspace; Orbital minimization method; Electronic structure; ELECTRONIC-STRUCTURE CALCULATIONS; ALGORITHM;
D O I
10.1016/j.jcp.2017.02.005
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We consider a modification of the orbital minimization method (OMM) energy functional which contains an l(1) penalty term in order to find a sparse representation of the low-lying eigenspace of self-adjoint operators. We analyze the local minima of the modified functional as well as the convergence of the modified functional to the original functional. Algorithms combining soft thresholding with gradient descent are proposed for minimizing this new functional. Numerical tests validate our approach. In addition, we also prove the unanticipated and remarkable property that every local minimum of the OMM functional without the l(1) term is also a global minimum. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:87 / 103
页数:17
相关论文
共 50 条
  • [21] Reweighted l1 minimization method for stochastic elliptic differential equations
    Yang, Xiu
    Karniadakis, George Em
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 248 : 87 - 108
  • [22] Robust point matching by l1 regularization
    Yi, Jianbing
    Li, Yan-Ran
    Yang, Xuan
    He, Tiancheng
    Chen, Guoliang
    PROCEEDINGS 2015 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE, 2015, : 369 - 374
  • [23] Sparse possibilistic clustering with L1 regularization
    Inokuchi, Ryo
    Miyamoto, Sadaaki
    GRC: 2007 IEEE INTERNATIONAL CONFERENCE ON GRANULAR COMPUTING, PROCEEDINGS, 2007, : 442 - 445
  • [24] A New Image Restoration Method by Gaussian Smoothing with L1 Norm Regularization
    Huang, Yu-Mei
    Qu, Guang-Fu
    Wei, Zheng-Hong
    2012 5TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING (CISP), 2012, : 343 - 346
  • [25] Application of L1/2 regularization logistic method in heart disease diagnosis
    Zhang, Bowen
    Chai, Hua
    Yang, Ziyi
    Liang, Yong
    Chu, Gejin
    Liu, Xiaoying
    BIO-MEDICAL MATERIALS AND ENGINEERING, 2014, 24 (06) : 3447 - 3454
  • [26] Interpolation via weighted l1 minimization
    Rauhut, Holger
    Ward, Rachel
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2016, 40 (02) : 321 - 351
  • [27] Selective l1 Minimization for Sparse Recovery
    Van Luong Le
    Lauer, Fabien
    Bloch, Gerard
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2014, 59 (11) : 3008 - 3013
  • [28] A SIMPLER APPROACH TO WEIGHTED l1 MINIMIZATION
    Krishnaswamy, Anilesh K.
    Oymak, Samet
    Hassibi, Babak
    2012 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2012, : 3621 - 3624
  • [29] Sensitivity of l1 minimization to parameter choice
    Berk, Aaron
    Plan, Yaniv
    Yilmaz, Ozgur
    INFORMATION AND INFERENCE-A JOURNAL OF THE IMA, 2021, 10 (02) : 397 - 453
  • [30] Enhancing Sparsity by Reweighted l1 Minimization
    Candes, Emmanuel J.
    Wakin, Michael B.
    Boyd, Stephen P.
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2008, 14 (5-6) : 877 - 905